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Multilevel copper metallization of a complementary metal oxide semiconductor (CMOS) chip. This scanning
electron micrograph (scale: 1 cm = 3.5 microns) of a CMOS infegrated circuit shows six levels of copper
metallization that are used to carry electrical signals on the chip. The inter-metal dielectric insulators have
been chemically etched away here to reveal the copper interconnects. (Photograph courtesy of IBM.)
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PREFACE

This book is an introduction to semiconductor devices for undergraduate
electrical engineers, other interested students, and practicing engineers and
scientists whose understanding of modern electronics needs updating. The
book is organized to bring students with a background in sophomore physics
to a level of understanding that will allow them to read much of the current
literature on new devices and applications.

An undergraduate course in electronic devices has two basic purposes:
(1) to provide students with a sound understanding of existing devices, so
that their studies of electronic circuits and systems will be meaningful and
(2) to develop the basic tools with which they can later learn about newly
developed devices and applications. Perhaps the second of these objectives
is the more important in the long run; it is clear that engineers and scientists
who deal with electronics will continually be called upon to learn about
new devices and processes in the future. For this reason, we have tried to
incorporate the basics of semiconductor materials and conduction processes
in solids, which arise repeatedly in the literature when new devices are
explained. Some of these concepts are often omitted in introductory courses,
with the view that they are unnecessary for understanding the fundamentals
of junctions and transistors. We believe this view neglects the important goal
of equipping students for the task of understanding a new device by reading
the current literature. Therefore, in this text most of the commonly used
semiconductor terms and concepts are introduced and related to a broad
range of devices.

GOALS

e updated discussion of MOS devices, both in the underlying theory of
ballistic FETs as well as discussion of advanced MOSFETs such as
FinFETs, strained Si devices, metal gate/ high-k devices, III-V high
channel mobility devices

e updated treatment of optoelectronic devices, including high bandgap
nitride semiconductors and quantum cascade lasers

e brand new section on nanoelectronics to introduce students to excit-
ing concepts such as 2D materials including graphene and topologi-
cal insulators, 1D nanowires and nanotubes, and 0D quantum dots;

e discussion of spintronics, and novel resistive and phase change
memories

e about 100 new problems, and current references which extend con-
cepts in the text.

WHAT IS NEW IN

THIS EDITION

13
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Preface

READING LISTS

As a further aid in developing techniques for independent study, the reading
list at the end of each chapter includes a few articles which students can read
comfortably as they study this book. We do not expect that students will read
all articles recommended in the reading lists; nevertheless, some exposure to
periodicals is useful in laying the foundation for a career of constant updat-
ing and self-education. We have also added a summary of the key concepts
at the end of each chapter.

PROBLEMS

One of the keys to success in understanding this material is to work prob-
lems that exercise the concepts. The problems at the end of each chapter are
designed to facilitate learning the material. Very few are simple “plug-in”
problems. Instead, they are chosen to reinforce or extend the material pre-
sented in the chapter. In addition, we have added “self quiz” problems that
test the conceptual understanding on the part of the students.

UNITS

In keeping with the goals described above, examples and problems are stated
in terms of units commonly used in the semiconductor literature. The basic
system of units is rationalized MKS, although cm is often used as a conve-
nient unit of length. Similarly, electron volts (eV) are often used rather than
joules (J) to measure the energy of electrons. Units for various quantities are
given in Appendices I and II.

PRESENTATION

In presenting this material at the undergraduate level, one must anticipate
a few instances which call for a phrase such as “It can be shown ...” This
is always disappointing; on the other hand, the alternative is to delay study
of solid state devices until the graduate level, where statistical mechanics,
quantum theory, and other advanced background can be freely invoked. Such
a delay would result in a more elegant treatment of certain subjects, but it
would prevent undergraduate students from enjoying the study of some very
exciting devices.

The discussion includes both silicon and compound semiconductors, to
reflect the continuing growth in importance for compounds in optoelectronic
and high-speed device applications. Topics such as heterojunctions, lattice-
matching using ternary and quaternary alloys, variation of band gap with
alloy composition, and properties of quantum wells add to the breadth of
the discussion. Not to be outdone by the compounds, silicon-based devices
have continued their dramatic record of advancement. The discussion of FET
structures and Si integrated circuits reflects these advancements. Our objec-
tive is not to cover all the latest devices, which can only be done in the journal
and conference literature. Instead, we have chosen devices to discuss which
are broadly illustrative of important principles.
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The first four chapters of the book provide background on the nature of
semiconductors and conduction processes in solids (Chapters 3,4). Included
is a brief introduction to quantum concepts (Chapter 2) for those students
who do not already have this background from other courses. Chapter 5
describes the p-n junction and some of its applications. Chapters 6 and 7 deal
with the principles of transistor operation. Chapter 8 covers optoelectronics,
and Chapter 9 discusses integrated circuits. Chapter 10 applies the theory of
junctions and conduction processes to microwave and power devices. A com-
pletely new section on nanoelectronics has been added. All of the devices
covered are important in today’s electronics; furthermore, learning about
these devices should be an enjoyable and rewarding experience. We hope
this book provides that kind of experience for its readers.

The seventh edition benefits greatly from comments and suggestions pro-
vided by students and teachers of the first six editions. The book’s readers
have generously provided comments which have been invaluable in devel-
oping the present version. We remain indebted to those persons mentioned
in the Preface of the first six editions, who contributed so much to the
development of the book. In particular, Nick Holonyak has been a source
of continuing information and inspiration for all seven editions. Additional
thanks go to our colleagues at UT—Austin who have provided special assis-
tance, particularly Leonard Frank Register, Emanuel Tutuc, Ray Chen,
Ananth Dodabalapur, Seth Bank, Misha Belkin, Zheng Wang, Neal Hall,
Deji Akinwande, Jack Lee, and Dean Neikirk. Hema Movva provided useful
assistance with the typing of the homework solutions. We thank the many
companies and organizations cited in the figure captions for generously pro-
viding photographs and illustrations of devices and fabrication processes.
Bob Doering at TI, Mark Bohr at Intel, Chandra Mouli at Micron, Babu
Chalamala at MEMC and Kevin Lally at TEL deserve special mention for
the new pictures in this edition. Finally, we recall with gratitude many years
of association with Joe Campbell, Karl Hess, and the late Al Tasch, valued
colleagues and friends.

Ben G. Streetman
Sanjay Kumar Banerjee

The publishers would like to thank the following for their contribution to
the Global Edition:

Contributor:
Rikmantra Basu, Assistant Professor, Electronics and Communication Engi-
neering (ECE) Department, National Institute of Technology (NIT) Delhi

Reviewers:

Sunanda Khosla (writer)

Prof. Tan Chuan Seng, Nanyang Technological University
Prof. Dr. habil. Jorg Schulze, University of Stuttgart

ACKNOW-
LEDGMENTS



PRENTICE HALL SERIES
IN SOLID STATE PHYSICAL ELECTRONICS
Nick Holonyak Jr., Editor

Cheo FIBER OPTICS: DEVICES AND SYSTEMS SECOND EDITION

Haus WAVES AND FIELDS IN OPTOELECTRONICS

Kroemer QUANTUM MECHANICS FOR ENGINEERING, MATERIALS SCIENCE,
AND APPLIED PHYSICS

Nussbaum CONTEMPORARY OPTICS FOR SCIENTISTS AND ENGINEERS

Peyghambarian/Koch/Mysyrowicz  INTRODUCTION TO SEMICONDUCTOR OPTICS

Shur  PHYSICS OF SEMICONDUCTOR DEVICES

Soclof DESIGN AND APPLICATIONS OF ANALOG INTEGRATED CIRCUITS

Streetman/Banerjee  SOLID STATE ELECTRONIC DEVICES SEVENTH EDITION

Verdeyen LASER ELECTRONICS THIRD EDITION

Wolfe/Holonyak/Stillman  PHYSICAL PROPERTIES OF SEMICONDUCTORS



ABOUT THE AUTHORS

Ben G. Streetman is Dean Emeritus of the Cockrell School of Engineering at
The University of Texas at Austin. He is an Emeritus Professor of Electrical
and Computer Engineering, where he held the Dula D. Cockrell Centennial
Chair. He was the founding Director of the Microelectronics Research Center
(1984-1996) and served as Dean of Engineering from 1996 to 2008. His teach-
ing and research interests involve semiconductor materials and devices. After
receiving a Ph.D. from The University of Texas at Austin (1966) he was on
the faculty (1966-1982) of the University of Illinois at Urbana-Champaign.
He returned to The University of Texas at Austin in 1982. His honors include
the Education Medal of the Institute of Electrical and Electronics Engineers
(IEEE), the Frederick Emmons Terman Medal of the American Society for
Engineering Education (ASEE), and the Heinrich Welker Medal from the
International Conference on Compound Semiconductors. He is a member of
the National Academy of Engineering and the American Academy of Arts
and Sciences. He is a Fellow of the IEEE and the Electrochemical Society. He
has been honored as a Distinguished Alumnus of The University of Texas at
Austin and as a Distinguished Graduate of the UT College of Engineering.
He has received the General Dynamics Award for Excellence in Engineering
Teaching, and was honored by the Parents’ Association as a Teaching Fellow
for outstanding teaching of undergraduates. He has served on numerous pan-
els and committees in industry and government, and several corporate boards.
He has published more than 290 articles in the technical literature. Thirty-
four students of Electrical Engineering, Materials Science, and Physics have
received their Ph.D.s under his direction.



18

About the Authors

Sanjay Kumar Banerjee is the Cockrell Chair Professor of Electrical and
Computer Engineering, and Director of the Microelectronics Research Center
at The University of Texas at Austin. He received his B.Tech. from the Indian
Institute of Technology, Kharagpur, and his M.S. and Ph.D. from the University
of Illinois at Urbana-Champaign in 1979, 1981, and 1983, respectively, in
electrical engineering. He worked at TI from 1983-1987 on the world’s first
4Megabit DRAM, for which he was a co-recipient of an ISSCC Best Paper
Award. He has more than 900 archival refereed publications and conference
papers, 30 U.S. patents, and has supervised over 50 Ph.D. students. His hon-
ors include the NSF Presidential Young Investigator Award (1988), the Texas
Atomic Energy Centennial Fellowship (1990-1997), Cullen Professorship
(1997-2001), and the Hocott Research Award from the University of Texas.
He has received the ECS Callinan Award (2003), Industrial R&D 100 Award
(2004), Distinguished Alumnus Award, IIT (2005), IEEE Millennium Medal
(2000) and IEEE Andrew S. Grove Award (2014). He is a Fellow of IEEE,
APS and AAAS. He is interested in beyond-CMOS nanoelectronic transistors
based on 2D materials and spintronics, fabrication and modeling of advanced
MOSFETs, and solar cells.



Solid State Electronic Devices






Chapter 1

Crystal Properties and Growth
of Semiconductors

OBJECTIVES

1. Describe what a semiconductor is

2. Perform simple calculations about crystals

3. Understand what is involved in bulk Czochralski and thin-film epitaxial
crystal growth

4. Learn about crystal defects

In studying solid state electronic devices we are interested primarily in the
electrical behavior of solids. However, we shall see in later chapters that the
transport of charge through a metal or a semiconductor depends not only
on the properties of the electron but also on the arrangement of atoms in
the solid. In this chapter we shall discuss some of the physical properties of
semiconductors compared with other solids, the atomic arrangements of vari-
ous materials, and some methods of growing semiconductor crystals. Topics
such as crystal structure and crystal growth technology are often the subjects
of books rather than introductory chapters; thus we shall consider only a few
of the more important and fundamental ideas that form the basis for under-
standing electronic properties of semiconductors and device fabrication.

Semiconductors are a group of materials having electrical conductivities
intermediate between metals and insulators. It is significant that the conduc-
tivity of these materials can be varied over orders of magnitude by changes
in temperature, optical excitation, and impurity content. This variability of
electrical properties makes the semiconductor materials natural choices for
electronic device investigations.

Semiconductor materials are found in column IV and neighboring
columns of the periodic table (Table 1-1). The column IV semiconductors,
silicon and germanium, are called elemental semiconductors because they are
composed of single species of atoms. In addition to the elemental materials,
compounds of column III and column V atoms, as well as certain combina-
tions from II and VI, and from IV, make up the compound semiconductors.

1.1

SEMICONDUCTOR

MATERIALS

21
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Chapter 1

As Table 1-1 indicates, there are numerous semiconductor materi-
als. As we shall see, the wide variety of electronic and optical properties of
these semiconductors provides the device engineer with great flexibility in
the design of electronic and optoelectronic functions. The elemental semi-
conductor Ge was widely used in the early days of semiconductor devel-
opment for transistors and diodes. Silicon is now used for the majority of
rectifiers, transistors, and integrated circuits (ICs). However, the compounds
are widely used in high-speed devices and devices requiring the emission or
absorption of light. The two-element (binary) I1I-V compounds such as GaN,
GaP,and GaAs are common in light-emitting diodes (LEDs). As discussed in
Section 1.2.4, three-element (ternary) compounds such as GaAsP and four-
element (quaternary) compounds such as InGaAsP can be grown to provide
added flexibility in choosing materials properties.

Fluorescent materials such as those used in television screens usu-
ally are II-VI compound semiconductors such as ZnS. Light detectors are
commonly made with InSb, CdSe, or other compounds such as PbTe and
HgCdTe. Si and Ge are also widely used as infrared and nuclear radiation
detectors. Light-emitting diodes are made using GaN and other III-V com-
pounds. Semiconductor lasers are made using GaAs, AlGaAs, and other ter-
nary and quaternary compounds.

One of the most important characteristics of a semiconductor, which
distinguishes it from metals and insulators, is its energy band gap.This property,
which we will discuss in detail in Chapter 3, determines among other things the
wavelengths of light that can be absorbed or emitted by the semiconductor.
For example, the band gap of GaAs is about 1.43 electron volts (eV), which

Table 1-1  Common semiconductor materials: (a) the portion of the periodic table where
semiconductors occur; (b) elemental and compound semiconductors.

(a) Il ]| v \'/ Vi
B C N
Al Si P S
Zn Ga Ge As Se
Cd In Sb Te
Binary llI-V Binary lI-VI
(b) Elemental IV compounds compounds compounds
Si SiC AlP ZnS
Ge SiGe AlAs ZnSe
AlSb ZnTe
GaN CdSs
GaP CdSe
GaAs CdTe
GaSb
InP
InAs
InSb




Crystal Properties and Growth of Semiconductors

corresponds to light wavelengths in the near infrared. In contrast, GaP has a
band gap of about 2.3 eV, corresponding to wavelengths in the green portion
of the spectrum. The band gap E, for various semiconductor materials is listed
along with other properties in Appendix III. As a result of the wide variety
of semiconductor band gaps, LEDs and lasers can be constructed with wave-
lengths over a broad range of the infrared and visible portions of the spectrum.

The electronic and optical properties of semiconductor materials are
strongly affected by impurities, which may be added in precisely controlled
amounts. Such impurities are used to vary the conductivities of semicon-
ductors over wide ranges and even to alter the nature of the conduction
processes from conduction by negative charge carriers to positive charge
carriers. For example, an impurity concentration of one part per million can
change a sample of Si from a poor conductor to a good conductor of electric
current. This process of controlled addition of impurities, called doping, will
be discussed in detail in subsequent chapters.

To investigate these useful properties of semiconductors, it is necessary
to understand the atomic arrangements in the materials. Obviously, if slight
alterations in purity of the original material can produce such dramatic changes
in electrical properties, then the nature and specific arrangement of atoms in
each semiconductor must be of critical importance. Therefore, we begin our
study of semiconductors with a brief introduction to crystal structure.
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In this section we discuss the arrangements of atoms in various solids. We
shall distinguish between single crystals and other forms of materials and
then investigate the periodicity of crystal lattices. Certain important crys-
tallographic terms will be defined and illustrated in reference to crystals
having a basic cubic structure. These definitions will allow us to refer to
certain planes and directions within a lattice. Finally, we shall investigate the
diamond lattice; this structure, with some variations, is typical of most of the
semiconductor materials used in electronic devices.

1.2.1 Periodic Structures

A crystalline solid is distinguished by the fact that the atoms making up the
crystal are arranged in a periodic fashion. That is, there is some basic arrange-
ment of atoms that is repeated throughout the entire solid. Thus the crystal
appears exactly the same at one point as it does at a series of other equivalent
points, once the basic periodicity is discovered. However, not all solids are
crystals (Fig. 1-1); some have no periodic structure at all (amorphous solids),
and others are composed of many small regions of single-crystal material
(polycrystalline solids). The high-resolution micrograph shown in Fig. 6-33
illustrates the periodic array of atoms in the single-crystal silicon of a transis-
tor channel compared with the amorphous SiO, (glass) of the oxide layer.

'The conversion between the energy E of a photon of light (eV) and its wavelength A (m) is A = 1.24/E.
For GaAs, A = 1.24/1.43 = 0.87 pm.

1.2
CRYSTAL LATTICES
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(a) Crystalline (b) Amorphous (c) Polycrystalline

Figure 1-1

Three types of solids, classified according to atomic arrangement: (a) crystalline and (b) amorphous
materials are illustrated by microscopic views of the atoms, whereas (c) polycrystalline structure is
illustrated by a more macroscopic view of adjacent single-crystalline regions, such as (a).

Figure 1-2

A two-dimensional
lattice showing
translation of

a unit cell by

r = 3a + 2b.

The periodicity in a crystal is defined in terms of a symmetric array of
points in space called the lattice. We can add atoms at each lattice point in
an arrangement called a basis, which can be one atom or a group of atoms
having the same spatial arrangement, to get a crystal. In every case, the lattice
contains a volume or cell that represents the entire lattice and is regularly
repeated throughout the crystal. As an example of such a lattice, Fig. 1-2
shows a two-dimensional arrangement of atoms called a rhombic lattice,
with a primitive cell ODEF, which is the smallest such cell. Notice that we
can define vectors a and b such that if the primitive cell is translated by inte-
gral multiples of these vectors, a new primitive cell identical to the original
is found (e.g., O'D'E'F'). These vectors, a and b (and c if the lattice is three
dimensional), are called the primitive vectors for the lattice. Points within the
lattice are indistinguishable if the vector between the points is

r=pa + gb + sc (1-1)

where p, ¢, and s are integers. The primitive cell shown has lattice points only
at the corners of the cell. The primitive cell is not unique, but it must cover

T 7
VTV T 7

O a F
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the entire volume of the crystal (without missing or extra bits) by translations
by integer numbers of primitive vectors, and it can have only one lattice point
per cell. The convention is to choose the smallest primitive vectors. Note
that, in the primitive cell shown in Fig. 1-2, the lattice points at the corners
are shared with adjacent cells; thus, the effective number of lattice points
belonging to the primitive cell is unity. Since there are many different ways
of placing atoms in a volume, the distances and orientation between atoms
can take many forms, leading to different lattice and crystal structures. It is
important to remember that the symmetry determines the lattice, not the
magnitudes of the distances between the lattice points.

In many lattices, however, the primitive cell is not the most convenient
to work with. For example, in Fig. 1-2, we see that the rhombic arrangement
of the lattice points is such that it can also be considered to be rectangular
(PQRS) with a lattice point in the center at T (a so-called centered rectan-
gular lattice). (Note that this is not true of all rhombic lattices!) Clearly, it
is simpler to deal with a rectangle rather than a rhombus. So, in this case we
can choose to work with a larger rectangular unit cell, PQRS, rather than the
smallest primitive cell, ODEF. A unit cell allows lattice points not only at the
corners but also at the face center (and body center in 3-D) if necessary. It is
sometimes used instead of the primitive cell if it can represent the symmetry
of the lattice better (in this example “centered rectangular” two-dimensional
lattice). It replicates the lattice by integer translations of basis vectors.

The importance of the unit cell lies in the fact that we can analyze the
crystal as a whole by investigating a representative volume. For example,
from the unit cell we can find the distances between nearest atoms and next
nearest atoms for calculation of the forces holding the lattice together; we
can look at the fraction of the unit cell volume filled by atoms and relate the
density of the solid to the atomic arrangement. But even more important for
our interest in electronic devices, the properties of the periodic crystal lattice
determine the allowed energies of electrons that participate in the conduc-
tion process. Thus the lattice determines not only the mechanical properties
of the crystal but also its electrical properties.

1.2.2 Cubic Lattices

The simplest three-dimensional lattice is one in which the unit cell is a cubic
volume, such as the three cells shown in Fig. 1-3. The simple cubic structure
(abbreviated sc) has an atom located at each corner of the unit cell. The

a a a

Simple cubic Body-centered cubic Face-centered cubic
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Figure 1-3

Unit cells for three
types of cubic
lattice structures.
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Figure 1-4
Packing of hard
spheres in an fcc
lattice.

EXAMPLE 1-1

body-centered cubic (bcc) lattice has an additional atom at the center of the
cube, and the face-centered cubic (fcc) unit cell has atoms at the eight corners
and centered on the six faces. All three structures have different primitive
cells, but the same cubic unit cell. We will generally work with unit cells.

As atoms are packed into the lattice in any of these arrangements, the
distances between neighboring atoms will be determined by a balance between
the forces that attract them together and other forces that hold them apart. We
shall discuss the nature of these forces for particular solids in Section 3.1.1. For
now, we can calculate the maximum fraction of the lattice volume that can be
filled with atoms by approximating the atoms as hard spheres. For example,
Fig. 1-4 illustrates the packing of spheres in a fcc cell of side a, such that the
nearest neighbors touch. The dimension a for a cubic unit cell is called the lat-
tice constant. For the fcc lattice the nearest neighbor distance is one-half the
diagonal of a face, or %(a \/2).Theref0re, for the atom centered on the face to
just touch the atoms at each corner of the face, the radius of the sphere must
be one-half the nearest neighbor distance, or (a \[2)

Find the fraction of the fcc unit cell volume filled with hard spheres.

SOLUTION

52
2

Nearest atom separation = —— A = 3.54 A

Tetrahedral radius = 1.77 A
Volume of each atom = 23.14 A

1 1
Number of atoms per cube 6 > I+ Bo e 4 atoms

231A°-4
Packing fraction (57/3‘)3 =074 = 74%
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1.2.3 Planes and Directions

In discussing crystals it is very helpful to be able to refer to planes and direc-
tions within the lattice. The notation system generally adopted uses a set of
three integers to describe the position of a plane or the direction of a vector
within the lattice. We first set up an xyz coordinate system with the origin at
any lattice point (it does not matter which one because they are all equiva-
lent!), and the axes are lined up with the edges of the cubic unit cell. The
three integers describing a particular plane are found in the following way:

1. Find the intercepts of the plane with the crystal axes and express
these intercepts as integral multiples of the basis vectors (the plane
can be moved in and out from the origin, retaining its orientation,
until such an integral intercept is discovered on each axis).

2. Take the reciprocals of the three integers found in step 1 and reduce
these to the smallest set of integers /4, k, and /, which have the same
relationship to each other as the three reciprocals.

3. Label the plane (hkl).

The plane illustrated in Fig. 1-5 has intercepts at 2a, 4b, and 1¢ along the
three crystal axes. Taking the reciprocals of these intercepts, we get %,
I, and 1. These three fractions have the same relationship to each other
as the integers 2, 1, and 4 (obtained by multiplying each fraction by 4).
Thus the plane can be referred to as a (214) plane. The only exception is
if the intercept is a fraction of the lattice constant a. In that case, we do
not reduce it to the lowest set of integers. For example, in Fig. 1-3, planes
parallel to the cube faces, but going through the body center atoms in the
bec lattice, would be (200) and not (100).

Z

The three integers 4, k, and [ are called the Miller indices; these three
numbers define a set of parallel planes in the lattice. One advantage of taking
the reciprocals of the intercepts is avoidance of infinities in the notation. One

EXAMPLE 1-2

Figure 1-5
A (214) crystal
plane.

27
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Figure 1-6
Equivalence of
the cube faces
({100} planes)

by rotation of the
unit cell within the
cubic lattice.

intercept is infinity for a plane parallel to an axis; however, the reciprocal
of such an intercept is taken as zero. If a plane contains one of the axes, it
is parallel to that axis and has a zero reciprocal intercept. If a plane passes
through the origin, it can be translated to a parallel position for calculation of
the Miller indices. If an intercept occurs on the negative branch of an axis, the
minus sign is placed above the Miller index for convenience, such as (hkl).

From a crystallographic point of view, many planes in a lattice are
equivalent; that is, a plane with given Miller indices can be shifted about
in the lattice simply by choice of the position and orientation of the unit
cell. The indices of such equivalent planes are enclosed in braces { } instead of
parentheses. For example, in the cubic lattice of Fig. 1-6, all the cube faces are
crystallographically equivalent in that the unit cell can be rotated in various
directions and still appear the same. The six equivalent faces are collectively
designated as {100}.

A direction in a lattice is expressed as a set of three integers with the
same relationship as the components of a vector in that direction. The three
vector components are expressed in multiples of the basis vectors, and the
three integers are reduced to their smallest values while retaining the rela-
tionship among them. For example, the body diagonal in the cubic lattice
(Fig. 1-7a) is composed of the components 1a, 1b, and 1¢; therefore, this
diagonal is the [111] direction. (Brackets are used for direction indices.) As in
the case of planes, many directions in a lattice are equivalent, depending only
on the arbitrary choice of orientation for the axes. Such equivalent direction
indices are placed in angular brackets ( ).For example, the crystal axes in the
cubic lattice [100], [010], and [001] are all equivalent and are called (100)
directions (Fig. 1-7b).

z (001)

(001)

(010)

(100)
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z z Figure 1-7
[001] Crystal directions
[111] in the cubic
lattice.
[010]
c c y
b < [110]

(a) (b)

Two useful relationships in terms of Miller indices describe the distance
between planes and angles between directions. The distance d between two
adjacent planes labeled (%kl) is given in terms of the lattice constant, a, as

d = a/(h® + I + I?)'/? (1-2a)
The angle 6 between two different Miller index directions is given by
cos 0 = {hhy + kik, + LLY{(h{ + ki + 1)V (h? + ki + LD)V?} (1-2b)

Comparing Figs. 1-6 and 1-7, we notice that in cubic lattices a direction
[hkl] is perpendicular to the plane (hk/). This is convenient in analyzing lat-
tices with cubic unit cells, but it should be remembered that it is not neces-
sarily true in noncubic systems.

1.2.4 The Diamond Lattice

The basic crystal structure for many important semiconductors is the fcc
lattice with a basis of two atoms, giving rise to the diamond structure, char-
acteristic of Si, Ge, and C in the diamond form. In many compound semicon-
ductors, atoms are arranged in a basic diamond structure, but are different
on alternating sites. This is called a zinc blende structure and is typical of the
III-V compounds. One of the simplest ways of stating the construction of
the diamond structure is the following:

The diamond structure can be thought of as an fcc lattice with an
extra atom placed at a/4 + b/4 + c¢/4 from each of the fcc atoms.

Figure 1-8a illustrates the construction of a diamond lattice from an fcc
unit cell. We notice that when the vectors are drawn with components one-
fourth of the cube edge in each direction, only four additional points within
the same unit cell are reached. Vectors drawn from any of the other fcc atoms
simply determine corresponding points in adjacent unit cells. This method of
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Figure 1-8

(a) (b)

Diamond lattice structure: (a) a unit cell of the diamond lattice constructed by placing atoms §, %, 7 from
each atom in an fec; (b) top view (along any (100) direction) of an extended diamond lattice. The
colored circles indicate one fcc sublattice and the black circles indicate the interpenetrating fec.

EXAMPLE 1-3

constructing the diamond lattice implies that the original fcc has associated
with it a second interpenetrating fcc displaced by }T, }T, }T. The two interpen-
etrating fcc sublattices can be visualized by looking down on the unit cell
of Fig. 1-8a from the top (or along any (100) direction). In the top view of
Fig. 1-8b, atoms belonging to the original fcc are represented by open circles,
and the interpenetrating sublattice is shaded. If the atoms are all similar, we
call this structure a diamond lattice; if the atoms differ on alternating sites, it
is a zinc blende structure. For example, if one fcc sublattice is composed of
Ga atoms and the interpenetrating sublattice is As, the zinc blende structure
of GaAs results. Most of the compound semiconductors have this type of
lattice, although some of the II-VI compounds are arranged in a slightly
different structure called the wurtzite lattice. We shall restrict our discussion
here to the diamond and zinc blende structures, since they are typical of most
of the commonly used semiconductors.

Calculate the volume density of Si atoms (number of atoms/cm?), given
that the lattice constant of Si is 5.43 A. Calculate the areal density of
atoms (number/cm?) on the (100) plane.

SOLUTION

On the (100) plane, we have four atoms on corners and one on the face
center.

4x%+1
100) plane: = 6.8 X 10“cm™
(100) plane: Fo = 10%) (5.43 x 10°9) om
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For Si, we have eight corner lattice points, six face centered points,
and two atoms

1 1
Number of atoms per cube = (8 X 3 + > X 6) X2 =28

8
Volume density = Ga3 X 107 = 5.00 X 102 cm™

A particularly interesting and useful feature of the III-V compounds
is the ability to vary the mixture of elements on each of the two interpen-
etrating fcc sublattices of the zinc blende crystal. For example, in the ternary
compound AlGaAs, it is possible to vary the composition of the ternary alloy
by choosing the fraction of Al or Ga atoms on the column III sublattice. It
is common to represent the composition by assigning subscripts to the vari-
ous elements. For example, Al Ga,_,As refers to a ternary alloy in which the
column III sublattice in the zinc blende structure contains a fraction x of Al
atoms and 1-x of Ga atoms. The composition Alj;Ga,;As has 30 percent Al
and 70 percent Ga on the column 1T sites, with the interpenetrating column V
sublattice occupied entirely by As atoms. It is extremely useful to be able
to grow ternary alloy crystals such as this with a given composition. For the
Al,Ga;_As example we can grow crystals over the entire composition range
from x = 0 tox = 1, thus varying the electronic and optical properties of
the material from that of GaAs (x = 0) to that of AlAs (x = 1). To vary
the properties even further, it is possible to grow four-element (quaternary)
compounds such as In,Ga,_,As P;_, having a very wide range of properties.

It is important from an electronic point of view to notice that each
atom in the diamond and zinc blende structures is surrounded by four near-
est neighbors (Fig. 1-9). The importance of this relationship of each atom
to its neighbors will become evident in Section 3.1.1 when we discuss the
bonding forces which hold the lattice together.

The fact that atoms in a crystal are arranged in certain planes is impor-
tant to many of the mechanical, metallurgical, and chemical properties of
the material. For example, crystals often can be cleaved along certain atomic
planes, resulting in exceptionally planar surfaces. This is a familiar result in
cleaved diamonds for jewelry; the facets of a diamond reveal clearly the
triangular, hexagonal, and rectangular symmetries of intersecting planes in
various crystallographic directions. Semiconductors with diamond and zinc
blende lattices have similar cleavage planes. Chemical reactions, such as
etching of the crystal, often take place preferentially along certain direc-
tions. These properties serve as interesting illustrations of crystal symmetry,
but in addition, each plays an important role in fabrication processes for
many semiconductor devices.
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Figure 1-9
Diamond

lattice unit cell,
showing the four
nearest neighbor
structure. (From
Electrons and Holes
in Semiconductors
by W. Shockley,
© 1950 by Lition
Educational
Publishing Co.,
Inc.; by permission
of Van Nostrand
Reinhold Co., Inc.)
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1.3
BULK CRYSTAL
GROWTH

The progress of solid state device technology since the invention of the tran-
sistor in 1948 has depended not only on the development of device concepts
but also on the improvement of materials. For example, the fact that ICs can
be made today is the result of a considerable breakthrough in the growth
of pure, single-crystal Si in the early and mid-1950s. The requirements on
the growing of device-grade semiconductor crystals are more stringent than
those for any other materials. Not only must semiconductors be available in
large single crystals, but also the purity must be controlled within extremely
close limits. For example, Si crystals now being used in devices are grown with
concentrations of most impurities of less than one part in ten billion. Such
purities require careful handling and treatment of the material at each step
of the manufacturing process.

1.3.1 Starting Materials

The raw feedstock for Si crystal is silicon dioxide (SiO,). We react SiO, with
Cin the form of coke in an arc furnace at very high temperatures (~1800°C)
to reduce SiO, according to the following reaction:

SiO, + 2C — Si + 2CO (1-3)

This forms metallurgical grade Si (MGS) which has impurities such
as Fe, Al, and heavy metals at levels of several hundred to several thousand
parts per million (ppm). Refer back to Example 1-3 to see that 1 ppm of
Si corresponds to an impurity level of 5 X 10'®cm 3. While MGS is clean
enough for metallurgical applications such as using Si to make stainless
steel, it is not pure enough for electronic applications; it is also not single
crystal.
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The MGS is refined further to yield semiconductor-grade or electronic-
grade Si (EGS), in which the levels of impurities are reduced to parts per
billion or ppb (1 ppb = 5 X 10" cm™?). This involves reacting the MGS with
dry HCl according to the following reaction to form trichlorosilane, SiHCl;,
which is a liquid with a boiling point of 32°C:

Si + 3HCl— SiHCl, + H, (1-4)

Along with SiHCl;, chlorides of impurities such as FeCl; are formed
which fortunately have boiling points that are different from that of SiIHCl,.
This allows a technique called fractional distillation to be used, in which we
heat up the mixture of SiHCl; and the impurity chlorides, and condense the
vapors in different distillation towers held at appropriate temperatures. We
can thereby separate pure SiHCl; from the impurities. SiHCl; is then con-
verted to highly pure EGS by reaction with H,,

2SiHCl, + 2H, — 2Si + 6HCl (1-5)

1.3.2 Growth of Single-Crystal Ingots

Next, we have to convert the high purity but still polycrystalline EGS to
single-crystal Si ingots or boules. This is generally done today by a process
commonly called the Czochralski method. In order to grow single-crystal
material, it is necessary to have a seed crystal which can provide a template
for growth. We melt the EGS in a quartz-lined graphite crucible by resistively
heating it to the melting point of Si (1412°C).

A seed crystal is lowered into the molten material and then is raised
slowly, allowing the crystal to grow onto the seed (Fig. 1-10a). Generally, the

Pull
Seed T

Growing

crystal T

Crucible : ]
(a) (b)

Figure 1-10

Pulling of a Si crystal from the melt (Czochralski method): (a) schematic diagram of
the crystal growth process; (b) an 8-in. diameter, (100) oriented Si crystal being
pulled from the melt. (Photograph courtesy of MEMC Electronics Intl.)
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(@)

(b)

Figure 1-11
(a) Silicon crystal grown by the Czochralski method. This large single-crystal ingot provides 300 mm
(12-in.) diameter wafers when sliced using a saw. The ingot is about 1.0 m long (including the tapered

regions), and weighs about 140 kg. (b) technician holding a 300 mm wafer. (Photograph courtesy of
MEMC Electronics Intl.)
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crystal is rotated slowly as it grows to provide a slight stirring of the melt and
to average out any temperature variations that would cause inhomogeneous
solidification. This technique is widely used in growing Si, Ge, and some of
the compound semiconductors.

In pulling compounds such as GaAs from the melt, it is necessary to
prevent volatile elements (e.g., As) from vaporizing. In one method a layer
of B,O;, which is dense and viscous when molten, floats on the surface of
the molten GaAs to prevent As evaporation. This growth method is called
liquid-encapsulated Czochralski (LEC) growth.

In Czochralski crystal growth, the shape of the ingot is determined by
a combination of the tendency of the cross section to assume a polygonal
shape due to the crystal structure and the influence of surface tension, which
encourages a circular cross section. The crystal facets are noticeable in the
initial growth near the seed crystal in Fig. 1-10b. However, the cross section
of the large ingot in Fig. 1-11 is almost circular.

In the fabrication of Si ICs (Chapter 9) it is economical to use very large
Si wafers, so that many IC chips can be made simultaneously. As a result,
considerable research and development have gone into methods for growing
very large Si crystals. For example, Fig. 1-11 illustrates a ~12-inch or 300-mm
diameter Siingot, 1.0 m long and weighing 140 kg, and a 300 mm wafer.

1.3.3 Wafers

After the single-crystal ingot is grown, it is then mechanically processed to
manufacture wafers. The first step involves mechanically grinding the more-
or-less cylindrical ingot into a perfect cylinder with a precisely controlled
diameter. This is important because in a modern IC fabrication facility, many
processing tools and wafer handling robots require tight tolerances on the
size of the wafers. Using X-ray crystallography, crystal planes in the ingot are
identified. For reasons discussed in Section 6.4.3, most Si ingots are grown
along the (100) direction (Fig. 1-10). For such ingots, a small notch is ground
on one side of the cylinder to delineate a {110} face of the crystal. This is use-
ful because for (100) Si wafers, the {110} cleavage planes are orthogonal to
each other. This notch then allows the individual IC chips to be made oriented
along {110} planes so that when the chips are sawed apart, there is less chance
of spurious cleavage of the crystal, which could cause good chips to be lost.
Next, the Si cylinder is sawed into individual wafers about 775 um thick,
by using a diamond-tipped inner-hole blade saw, or a wire saw (Fig. 1-12).
State-of-the-art wafers today are 300 mm in diameter; the next size will be
450 mm. The resulting wafers are mechanically lapped and ground on both
sides to achieve a flat surface, and to remove the mechanical damage due
to sawing. Such damage would have a detrimental effect on devices. The
flatness of the wafer is critical from the point of view of “depth of focus”
or how sharp an image can be focussed on the wafer surface during pho-
tolithography, as discussed in Chapter 5. The Si wafers are then rounded
or “chamfered” along the edges to minimize the likelihood of chipping the
wafers during processing. Finally, the wafers undergo chemical-mechanical
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Waler polishing

N

\._

R

Figure 1-12
Steps involved in manufacturing Si wafers. (Photograph courtesy of MEMC Electronics Intl.)

polishing using a slurry of very fine SiO, particles in a basic NaOH solution
to give the front surface of the wafer a mirror-like finish. The wafers are
now ready for IC fabrication (Fig. 1-12). The economic value added in this
process is impressive. From sand (SiO,) costing pennies, we can obtain Si
wafers costing a few hundred dollars, on which we can make hundreds of
microprocessors, for example, each costing several hundred dollars.

1.3.4 Doping

As previously mentioned, there are some impurities in the molten EGS. We
may also add intentional impurities or dopants to the Si melt to change
its electronic properties. At the solidifying interface between the melt and
the solid, there will be a certain distribution of impurities between the two
phases. An important quantity that identifies this property is the distribution
coefficient k,, which is the ratio of the concentration of the impurity in the
solid C to the concentration in the liquid C; at equilibrium:

_ G

k, =
1T ¢

(1-6)
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The distribution coefficient is a function of the material, the impurity,
the temperature of the solid-liquid interface, and the growth rate. For an
impurity with a distribution coefficient of one-half, the relative concentra-
tion of the impurity in the molten liquid to that in the refreezing solid is two
to one. Thus the concentration of impurities in that portion of material that
solidifies first is one-half the original concentration C,. The distribution coef-
ficient is thus important during growth from a melt. This can be illustrated
by an example involving Czochralski growth:

Find the weight of As (k; = 0.3) added to 1 kg Si in Czochralski growth ~ EXAMPLE 1-4

for 10® cm™ doping.
&
mol

atomic weight of As = 74.9

37

1 - 1
;= C——— =333-105—

C.=k, C, = 10—
4 d =L cm 03 cm?

Assume As may be neglected for overall melt weight and volume
1000g Si
2332

cm?’

429.2 cm® Si

3.33- 1015$ <429 2 cm® = 1.43-10'® As atoms

1.43-10" atoms - 74.9 5 » .
23 atoms =1.8-10 gAS =1.8-10 kg As
6.02- 107200

One of the most important and versatile methods of crystal growth for device 1.4
applications is the growth of a thin crystal layer on a wafer of a compatible  EPITAXIAL
crystal. The substrate crystal may be a wafer of the same material as the GROWTH
grown layer or a different material with a similar lattice structure. In this

process the substrate serves as the seed crystal onto which the new crystalline

material grows. The growing crystal layer maintains the crystal structure and
orientation of the substrate. The technique of growing an oriented single-

crystal layer on a substrate wafer is called epitaxial growth, or epitaxy. As we

shall see in this section, epitaxial growth can be performed at temperatures
considerably below the melting point of the substrate crystal. A variety of

methods are used to provide the appropriate atoms to the surface of the

growing layer. These methods include chemical vapor deposition (CVD),2

2The generic term chemical vapor deposition includes the deposition of layers that may be polycrystalline
or amorphous. When a CVD process results in a single-crystal epitaxial layer, a more specific term is
vapor-phase epitaxy (VPE).
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growth from a melt (liquid-phase epitaxy, LPE), and evaporation of the ele-
ments in a vacuum (molecular beam epitaxy, MBE). With this wide range
of epitaxial growth techniques, it is possible to grow a variety of crystals for
device applications, having properties specifically designed for the electronic
or optoelectronic device being made.

1.4.1 Lattice-Matching in Epitaxial Growth

When Si epitaxial layers are grown on Si substrates, there is a natural match-
ing of the crystal lattice, and high-quality single-crystal layers result. On the
other hand, it is often desirable to obtain epitaxial layers that differ some-
what from the substrate, which is known as heteroepitaxy. This can be accom-
plished easily if the lattice structure and lattice constant a match for the two
materials. For example, GaAs and AlAs both have the zinc blende structure,
with a lattice constant of about 5.65 A. As a result, epitaxial layers of the ter-
nary alloy AlGaAs can be grown on GaAs substrates with little lattice mis-
match. Similarly, GaAs can be grown on Ge substrates (see Appendix III).

Since AlAs and GaAs have similar lattice constants, it is also true that
the ternary alloy AlGaAs has essentially the same lattice constant over the
entire range of compositions from AlAs to GaAs. As a result, one can choose
the composition x of the ternary compound Al,Ga,_,As to fit the particular
device requirement, and grow this composition on a GaAs wafer. The result-
ing epitaxial layer will be lattice-matched to the GaAs substrate.

Figure 1-13 illustrates the energy band gap FE, as a function of lattice
constant a for several III-V ternary compounds as they are varied over their
composition ranges. For example, as the ternary compound InGaAs is varied
by choice of composition on the column III sublattice from InAs to GaAs,
the band gap changes from 0.36 to 1.43 eV while the lattice constant of the
crystal varies from 6.06 A for InAs to 5.65 A for GaAs. Clearly, we cannot
grow this ternary compound over the entire composition range on a particular
binary substrate, which has a fixed lattice constant. As Fig. 1-13 illustrates,
however, it is possible to grow a specific composition of InGaAs on an InP
substrate. The vertical (invariant lattice constant) line from InP to the InGaAs
curve shows that a midrange ternary composition (actually, Inj 3Ga, »,As) can
be grown lattice-matched to an InP substrate. Similarly, a ternary InGaP alloy
with about 50 percent Ga and 50 percent In on the column III sublattice can
be grown lattice-matched to a GaAs substrate. To achieve a broader range
of alloy compositions, grown lattice-matched on particular substrates, it is
helpful to use quaternary alloys such as InGaAsP. The variation of composi-
tions on both the column III and column V sublattices provides additional
flexibility in choosing a particular band gap while providing lattice-matching
to convenient binary substrates such as GaAs or InP.

In the case of GaAsP, the lattice constant is intermediate between that
of GaAs and GaP, depending upon the composition. For example, GaAsP
crystals used in red LEDs have 40 percent phosphorus and 60 percent arsenic
on the column V sublattice. Since such a crystal cannot be grown directly on
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Figure 1-13

Relationship between band gap and lattice constant for alloys in the INGaAsP and AlGaAsSb

systems. The dashed vertical lines show the lattice constants for the commercially available binary
substrates GaAs and InP. For the marked example of In,Ga;_As, the ternary composition x = 0.53
can be grown lattice-matched on InP, since the lattice constants are the same. For quaternary alloys,
the compositions on both the lll and V sublattices can be varied to grow lattice-matched epitaxial layers
along the dashed vertical lines between curves. For example, In,Ga;_As P;_, can be grown on InP
substrates, with resulting band gaps ranging from 0.75 eV to 1.35 eV. In using this figure, assume the
lattice constant a of a ternary alloy varies linearly with the composition x.

either a GaAs or a GaP substrate, it is necessary to gradually change the lat-
tice constant as the crystal is grown. Using a GaAs or Ge wafer as a substrate,
the growth is begun at a composition near GaAs. A region ~25 pm thick is
grown while gradually introducing phosphorus until the desired As/P ratio
is achieved. The desired epitaxial layer (e.g., 100 pm thick) is then grown on
this graded layer. By this method epitaxial growth always occurs on a crystal
of similar lattice constant. Although some crystal dislocations occur due to
lattice strain in the graded region, such crystals are of high quality and can
be used in LEDs.
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In addition to the widespread use of lattice-matched epitaxial layers,
the advanced epitaxial growth techniques described in the following sections
allow the growth of very thin (~100 A) layers of lattice-mismatched crys-
tals. If the mismatch is only a few percent and the layer is thin, the epitaxial
layer grows with a lattice constant in compliance with that of the seed crystal
(Fig. 1-14). The resulting layer is in compression or tension along the surface
plane as its lattice constant adapts to the seed crystal (Fig. 1-14). Such a layer
is called pseudomorphic because it is not lattice-matched to the substrate
without strain. However, if the epitaxial layer exceeds a critical layer thick-
ness, z,, which depends on the lattice mismatch, the strain energy leads to for-
mation of defects called misfit dislocations. Using thin alternating layers of
slightly mismatched crystal layers, it is possible to grow a strained-layer super-
lattice (SLS) in which alternate layers are in tension and compression. The
overall SLS lattice constant is an average of that of the two bulk materials.

1.4.2 Vapor-Phase Epitaxy

The advantages of low temperature and high-purity epitaxial growth can be
achieved by crystallization from the vapor phase. Crystalline layers can be grown
onto a seed or substrate from a chemical vapor of the semiconductor material

SiGe

t<t, 1>

(a) (®)

Heteroepitaxy and misfit dislocations. For example, in heteroepitaxy of a SiGe layer on Si, the lattice
mismatch between SiGe and Si leads to compressive strain in the SiGe layer. The amount of strain
depends on the mole fraction of Ge. (a) For layer thicknesses less than the critical layer thickness, t,
pseudomorphic growth occurs. (b) However, above t, misfit dislocations form at the interface which may
reduce the usefulness of the layers in device applications.
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or from mixtures of chemical vapors containing the semiconductor. Vapor-phase
epitaxy (VPE) is a particularly important source of semiconductor material for
use in devices. Some compounds such as GaAs can be grown with better purity
and crystal perfection by vapor epitaxy than by other methods. Furthermore,
these techniques offer great flexibility in the actual fabrication of devices. When
an epitaxial layer is grown on a substrate, it is relatively simple to obtain a sharp
demarcation between the type of impurity doping in the substrate and in the
grown layer. The advantages of this freedom to vary the impurity will be dis-
cussed in subsequent chapters. We point out here, however, that Si IC devices
(Chapter 9) are usually built in layers grown by VPE on Si wafers.

Epitaxial layers are generally grown on Si substrates by the controlled
deposition of Si atoms onto the surface from a chemical vapor containing
Si. In one method, a gas of silicon tetrachloride reacts with hydrogen gas to
give Si and anhydrous HCI:

SiCl, + 2H, = Si + 4HCI (1-7)

If this reaction occurs at the surface of a heated crystal, the Si atoms
released in the reaction can be deposited as an epitaxial layer. The HCI remains
gaseous at the reaction temperature and does not disturb the growing crystal. As
indicated, this reaction is reversible. This is very important because it implies
that by adjusting the process parameters, the reaction in Eq. (1-7) can be driven
to the left (providing etching of the Si rather than deposition). This etching can
be used for preparing an atomically clean surface on which epitaxy can occur.

This vapor epitaxy technique requires a chamber into which the gases
can be introduced and a method for heating the Si wafers. Since the chemical
reactions take place in this chamber, it is called a reaction chamber or, more
simply, a reactor. Hydrogen gas is passed through a heated vessel in which
SiCl, is evaporated; then the two gases are introduced into the reactor over the
substrate crystal, along with other gases containing the desired doping impuri-
ties. The Si slice is placed on a graphite susceptor or some other material that
can be heated to the reaction temperature with an rf heating coil or tungsten
halogen lamps. This method can be adapted to grow epitaxial layers of closely
controlled impurity concentration on many Si slices simultaneously (Fig. 1-15).

Gas inlet
j Gas baffle

A E
— Quartz chamber
p— o
o o
o o
o o
o o Susceptor
Radio 1rcqucncyg °
source ° °
o o
o o
o o
o o
p— o
— Pedestal
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Figure 1-15

A barreltype
reactor for Si
vapor-phase
epitaxy. These
are atmospheric
pressure systems.
The Si wafers are
held in slots cut on
the sides of a SiC-
coated graphite
susceptor that
flares out near the
base to promote
gas flow patterns
conducive to
uniform epitaxy.
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The reaction temperature for the hydrogen reduction of SiCly is
approximately 1150-1250°C. Other reactions may be employed at somewhat
lower temperatures, including the use of dichlorosilane (SiH,Cl,) at 1000
1100°C, or the pyrolysis of silane (SiHy) at 500-1000°C. Pyrolysis involves
the breaking up of the silane at the reaction temperature:

SiH, — Si + 2H, (1-8)

There are several advantages of the lower reaction temperature pro-
cesses, including the fact that they reduce migration of impurities from the
substrate to the growing epitaxial layer.

In some applications it is useful to grow thin Si layers on insulating
substrates. For example, vapor-phase epitaxial techniques can be used to
grow ~1 pm Si films on sapphire and other insulators.

Vapor-phase epitaxial growth is also important in the III-V com-
pounds, such as GaAs, GaP, and the ternary alloy GaAsP, which is widely
used in the fabrication of LEDs. Substrates are held at about 800°C on a
rotating wafer holder while phosphine, arsine, and gallium chloride gases
are mixed and passed over the samples. The GaCl is obtained by reacting
anhydrous HCI with molten Ga within the reactor. Variation of the crystal
composition for GaAsP can be controlled by altering the mixture of arsine
and phosphine gases.

Another useful method for epitaxial growth of compound semicon-
ductors is called metal-organic vapor-phase epitaxy (MOVPE), or organo-
metallic vapor-phase epitaxy (OMVPE). For example, the organometallic
compound trimethylgallium can be reacted with arsine to form GaAs and
methane:

(CH;);Ga + AsH; — GaAs + 3CH, (1-9)

This reaction takes place at about 700°C, and epitaxial growth of
high-quality GaAs layers can be obtained. Other compound semiconduc-
tors can also be grown by this method. For example, trimethylaluminum
can be added to the gas mixture to grow AlGaAs. This growth method is
widely used in the fabrication of a variety of devices, including solar cells
and lasers. The convenient variability of the gas mixture allows the growth
of multiple thin layers similar to those discussed below for molecular beam
epitaxy.

1.4.3 Molecular Beam Epitaxy

One of the most versatile techniques for growing epitaxial layers is called
molecular beam epitaxy (MBE). In this method the substrate is held in a
high vacuum while molecular or atomic beams of the constituents impinge
upon its surface (Fig. 1-16a). For example, in the growth of AlGaAs layers
on GaAs substrates, the Al, Ga,and As components, along with dopants, are
heated in separate cylindrical cells. Collimated beams of these constituents
escape into the vacuum and are directed onto the surface of the substrate.
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Figure 1-16
Crystal growth by molecular beam epitaxy (MBE): (a) evaporation cells inside a high-vacuum chamber
directing beams of Al, Ga, As, and dopants onto a GaAs substrate; (b) scanning electron micrograph of the

cross section of an MBE-grown crystal having alternating layers of GaAs (dark lines) and AlGaAs (light lines).

Each layer is four monolayers (4 x a/2 = 11.3 A;) thick.
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Figure 1-17
Molecular

beam epitaxy
facility in the
Microelectronics
Research Center
at the University
of Texas at Austin.

The rates at which these atomic beams strike the surface can be closely con-
trolled, and growth of very high-quality crystals results. The sample is held
at a relatively low temperature (about 600°C for GaAs) in this growth pro-
cedure. Abrupt changes in doping or in crystal composition (e.g., changing
from GaAs to AlGaAs) can be obtained by controlling shutters in front of
the individual beams. Using slow growth rates (=1 wm/h), it is possible to
control the shutters to make composition changes on the scale of the lattice
constant. For example, Fig. 1-16b illustrates a portion of a crystal grown
with alternating layers of GaAs and AlGaAs only four monolayers thick.
Because of the high vacuum and close controls involved, MBE requires a
rather sophisticated setup (Fig. 1-17). However, the versatility of this growth
method makes it very attractive for many applications.

As MBE has developed in recent years, it has become common to
replace some of the solid sources shown in Fig. 1-16 with gaseous chemical
sources. This approach, called chemical beam epitaxy, or gas-source MBE,
combines many of the advantages of MBE and VPE.

1.5

WAVE
PROPAGATION
IN DISCRETE,
PERIODIC
STRUCTURES

In the next two chapters, we will discuss the propagation of various types of
waves in finite size crystals. It is instructive to look at some of the general attri-
butes of such waves in a medium made of discrete, periodic atoms. Recall that
a wave is characterized by various parameters such as wavelength, A, angular
frequency, w = 2mv, phase, ¢, and intensity,] = A?, where A is the amplitude
of the wave [Fig. 1-18a]. The speed of the wave, v, = Av.Instead of wavelength,
one can also describe a wave in terms of the wavevector,k = 2/A. The veloc-
ity v,,, which is called the phase velocity of the wave, then can also be written as
w/k. In general, one may deal with not a single wave train, but a wave packet,
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made up of a superposition of various waves [Fig. 1-18b]. The wave packet
can be shown to travel with a group velocity, v, = dw/dk. A plane wave, |,
propagating in the * x direction can be writtenas{ = Aexp {j(kx £ wf)},
where j is the imaginary number. Equivalently, one can take linear com-
binations of these plane waves and describe them as standing waves
sin(kx * wr) and/or cos(kx t wf).

There are a few quirks when one looks at plane waves propagating in a
finite crystal with lattice constant a and of length L = Na, where N is the num-
ber of atoms [Fig. 1-18a]. Plane traveling waves cannot propagate in a finite
crystal —reflections at the boundaries will give rise to standing wave patterns. It
turns out that the mathematics is simpler in terms of plane waves propagating
in an infinite crystal. As long as we are interested in the bulk, rather than the
surface, properties of the crystal, one can artificially create an infinite crystal
by repeating the finite crystal of length L over all space, and requiring that the
value of the wave is equal on the two faces of the finite crystal, §s(0) = {(L).
This is known as the periodic boundary condition [Fig. 1-18b].

The second quirk about these waves is that in a discrete medium such
as a crystal, where atoms are located at a spacing a, the wavelengths are
physically distinguishable only up to a point. This is clear from Fig. 1-18a,
where one sees that two waves representing the displacement of the atoms
are physically indistinguishable. This means that the wavelengths below 2a,
or wave vectors, k, greater than 2w/2a = m/a are meaningless. The maxi-
mum range of k is known as the Brillouin zone. Notice that this would
not be true in a continuous medium, that is, where the lattice constant a
approaches zero.

<«— L =Na—

(b)
Figure 1-18

(a) The displacement pattern of the atoms shown in black in a one-dimensional crystal can be
described equivalently by a longer or shorter wavelength. The shortest possible wavelength
(i.e., largest k vector) determines the Brillouin zone. In a finite crystal, we have a standing wave
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pattern. (b) A more complicated wave involving a mixing of two wavelengths (or Fourier components
in k-space) giving rise to a beat pattern. By using a periodic boundary condition for the finite crystal

in (a), one ends up with propagating waves rather than standing waves, making the math simpler.
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Problems of wave propagation in periodic structures can be described
in so-called real space, x, or alternatively in reciprocal k-space. An analogy
would be describing a periodic signal f(f) = f(+ + T), either in the time
domain or by taking the Fourier transform, in the frequency domain, F(w).
Here, the time period T is equivalent to the length of the crystal, L. One can
extend this analogy further by considering not continuous signals f(¢), but
sampled time-domain signals as in digital signal processing. If the sampling
rate is At, one must use a Discrete Fourier Transform, where the highest rele-
vant frequency is the Nyquist frequency. The sampling rate Af corresponds
to the lattice constant, a, and the Nyquist frequency corresponds to the edge
of the Brillouin zone.

Incidentally, in Chapter 3 we will see that such waves describing physi-
cal displacement of atoms correspond to sound waves propagating in the
crystal, and are called phonons. In Chapters 2 and 3, we will see that electrons
propagating in crystals can also be described by a wave using the language
of quantum mechanics, in term of a complex “wavefunction.” However, such
electron wavefunctions are described by the plane waves mentioned above
multiplied by another function U(k,, x) = U(k,, x+a) having the same peri-
odicity as the lattice. Such wavefunctions are known as Bloch functions.

SUMMARY

1.1 Semiconductor devices are at the heart of information technology. Elemental
semiconductors such as Si appear in column IV of the periodic table, while
compound semiconductors such as GaAs consist of elements symmetrically
around column IV. More complicated alloy semiconductors are used to opti-
mize optoelectronic properties.

1.2 These devices are generally made in single-crystal material for best perfor-
mance. Single crystals have long-range order, while polycrystalline and amor-
phous materials have short-range and no order, respectively.

1.3 Lattices are determined by symmetry. In 3-D, these are called Bravais lat-
tices. When we put a basis of atom(s) on the lattice sites, we get a crystal. Common
semiconductors have an fcc symmetry with a basis of two identical or different
atoms, resulting in diamond or zinc blende crystals, respectively.

1.4 The fundamental building block of a lattice is a primitive cell with lattice points at
its corners. Sometimes it is easier to describe the crystal in terms of a larger “unit”
cell with lattice points not only at the corners but also at body or face centers.

1.5 Translating unit cells by integer numbers of basis vectors can replicate the lat-
tice. Planes and directions in a lattice can be defined in terms of Miller indices.

1.6 Real crystals can have defects in 0-, 1-, 2-, and 3-D, some of which are benign,
but many of which are harmful for device operation.

1.7 Semiconductor bulk crystals are grown from a melt by the Czochralski method,
starting from a seed. Single-crystal epitaxial layers can be grown on top of
semiconductor wafers in various ways, such as VPE, metal-organic chemical
vapor deposition (MOCVD), or MBE. One can thereby optimize doping and
band-structure properties for device fabrication.
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1.1

1.2

1.3

1.4

1.6

1.7

1.8

1.9

1.10

Using Appendix III, which of the listed semiconductors in Table 1-1 has the
largest band gap? The smallest? What are the corresponding wavelengths if
light is emitted at the energy E,? Is there a noticeable pattern in the band gap
energy of III-V compounds related to the column III element?

For a bec lattice structure with a lattice constant of 3 A, calculate the separating
distance between the nearest atoms, the radius, and the volume of each atoms.
Also find the maximum packing fraction.

Label the planes illustrated in Fig. P1-3.

(a) (b)

Sketch a bec unit cell with a monoatomic basis. If the atomic density is
1.6 X 10*?cm?, calculate the lattice constant. What is the atomic density per
unit area on the (110) plane? What is the radius of each atom? What are inter-
stitials and vacancies?

Calculate the densities of Si and GaAs from the lattice constants (Appendix III),
atomic weights, and Avogadro’s number. Compare the results with densities
given in Appendix III. The atomic weights of Si, Ga, and As are 28.1, 69.7 and
74.9, respectively.

The atomic radius of Ga and As are 136 pm and 114 pm, respectively. Using
hard sphere approximation, find the lattice constant of GaAs and the volume
of the primitive cell. [1 A = 100 pm].

Sketch an fcc lattice unit cell (lattice constant =35 A) with a monoatomic basis,
and calculate the atomic density per unit area on (110) planes. What is the
atomic density per unit volume? Indicate an interstitial defect in this cell.
Sketch a view down a (110) direction of a diamond lattice, using Fig. 1-9 as a
guide. Include lines connecting nearest neighbors.

Show by a sketch that the bec lattice can be represented by two interpenetrat-
ing sc lattices. To simplify the sketch, show a (100) view of the lattice.

(a) Find the number of atoms/cm? on the (100) surface of a Si wafer.

(b) What is the distance (in A) between nearest In neighbors in InP.

PROBLEMS

Figure P1-3
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1.11

1.12

1.13

1.14
1.15

1.16

1.17

1.18

1.19

The ionic radii of Na* (atomic weight 23) and Cl~ (atomic weight 35.5) are
1.0A and 1.8 A, respectively. Treating the ions as hard spheres, calculate the
density of NaCl. Compare this with the measured density of 2.17 g/cm?.

Sketch an sc unit cell with lattice constant a = 4 A, whose diatomic basis of
atom A is located at the lattice sites, and with atom B displaced by (a/2,0,0).
Assume that both atoms have the same size and we have a close-packed struc-
ture (i.e., nearest neighbor atoms touch each other). Calculate

(i) the packing fraction (i.e., fraction of the total volume occupied by atoms),
(ii) the number of B atoms per unit volume,
(iii) the number of A atoms per unit area on (100) planes.

How many atoms are found inside a unit cell of an sc, a bec, and an fcc crystal?
How far apart in terms of lattice constant a are the nearest neighbor atoms in
each case, measured from center to center?

Draw a cube such as Fig. 1-7 and show four {111} planes with different orienta-
tions. Repeat for {110} planes.

Find the maximum fractions of the unit cell volume that can be filled by hard
spheres in the sc, fcc, and diamond lattices.

Calculate the densities of Ge and InP from the lattice constants (Appendix I11),
atomic weights, and Avogadro’s number. Compare the results with the densities
given in Appendix I11.

Beginning with a sketch of an fcc lattice, add atoms at (}T,f@}) from each fcc
atom to obtain the diamond lattice. Show that only the four added atoms in
Fig. 1-8a appear in the diamond unit cell.

Assuming that the lattice constant varies linearly with composition x for a
ternary alloy (e.g., see the variation for InGaAs in Fig. 1-13), what composi-
tion of AlISb,As,_, is lattice-matched to InP? What composition of In,.Ga,_P
is lattice-matched to GaAs? What is the band gap energy in each case?

[Note: Such linear variations of crystal properties (e.g., lattice constant and
band gap) with mole fraction in alloys is known as Vegard’s law. A second-
order polynomial or quadratic fit to the data is called the bowing parameter. |

(a) Find the composition of In, Ga,As grown lattice-matched on InP sub-
strate. The lattice constants are: a(InAs) = 6.0584 A, a(GaAs) = 5.6533 A,
and a(InP) = 5.8688 A.

(b) Analloy of In,,Ga,gAs is grown pseudomorphically on a GaAs substrate.
Determine the maximum thickness of the grown layer.
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Question 1 SELF QUIZ
(a) Label the following planes using the correct notation for a cubic lattice of unit
cell edge length a (shown within the unit cell).
z z z
A A A
a a a—i—
y =y y
a a a a a a
X X X

(®)

Write out all of the equivalent (100) directions using the correct notation.

(c) On the two following sets of axes, (1) sketch the [011] direction and (2) a (111)
plane (for a cubic system with primitive vectors a, b, and c).
z z
M 1 @ ‘
J A ——c
. Ly
b b
f a a
X X
Question 2

(a) Which of the following three unit cells are primitive cells for the two-dimensional
lattice? Circle the correct combination in bold below.

1/2/3/1and2/1and3/2and3/1, 2, and 3

answer:

&

K

unit cell 1

O

<<>mt cell 2

O

unit cell 3

G

O
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(b) The following planes (shown within the first quadrant for 0 < x, y, z < a only,
with the dotted lines for reference only) are all from what one set of equivalent
planes? Use correct notation:

“Z < z

(c) Which of the following three planes (shown within the first quadrant only) is a
(121) plane? Circle the correct diagram.

Ik

z

A “Z
a a
y y

a a 2a a a/2 a
X X
Question 3

(a) Diamond and zinc blende crystal structures are both composed of a Bravais
lattice with a two-atom basis. Circle the correct unit cell for this Bravais lattice.

(b) Which statement below is true?

1. GaAs has a diamond [ zinc blende crystal structure.
2. Sihas a diamond | zinc blende crystal structure.
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Question 4

Give some examples of zero-dimensional, one-dimensional, two-dimensional, and
three-dimensional defects in a semiconductor.

Question 5

(a) Whatis the difference between a primitive cell and a unit cell? What is the utility
of both concepts?

(b) What is the difference between a lattice and a crystal? How many different one-
dimensional lattices can you have?

Question 6

Consider growing InAs on the following crystal substrates: InP, AlAs, GaAs, and
GaP. For which case would the critical thickness of the InAs layer be greatest? You
may use Fig. 1-13 from your text.

GaP | GaAs | AlAs | InP
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OBJECTIVES

1. Understand the wave—particle duality of nature in quantum mechanics
2. Study the Bohr model of atoms

3. Apply the Schrédinger equation to simple problems

4. Understand the electronic structure of atoms and the periodic table

5. Understand how semiconductor properties are determined

Since this book is primarily an introduction to solid state devices, it would
be preferable not to delay this discussion with subjects such as atomic the-
ory, quantum mechanics, and electron models. However, the behavior of
solid state devices is directly related to these subjects. For example, it would
be difficult to understand how an electron is transported through a semi-
conductor device without some knowledge of the electron and its interac-
tion with the crystal lattice. Therefore, in this chapter we shall investigate
some of the important properties of electrons, with special emphasis on
two points: (1) the electronic structure of atoms, and (2) the interaction of
atoms and electrons with excitation, such as the absorption and emission
of light. By studying electron energies in an atom, we lay the foundation
for understanding the influence of the lattice on electrons participating in
current flow through a solid. Our discussions concerning the interaction
of light with electrons form the basis for later descriptions of changes in
the conductivity of a semiconductor with optical excitation, properties of
light-sensitive devices, and lasers.

First, we shall investigate some of the experimental observations which
led to the modern concept of the atom, and then we shall give a brief intro-
duction to the theory of quantum mechanics. Several important concepts
will emerge from this introduction: the electrons in atoms are restricted to
certain energy levels by quantum rules; the electronic structure of atoms is
determined from these quantum conditions; and this “quantization” defines
certain allowable transitions involving absorption and emission of energy
by the electrons.
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The main effort of science is to describe what happens in nature, in as com-
plete and concise a form as possible. In physics this effort involves observing
natural phenomena, relating these observations to previously established
theory, and finally establishing a physical model for the observations. For
example, we can explain the behavior of a spring-supported weight mov-
ing up and down periodically after an initial displacement, because the dif-
ferential equations describing such a simple harmonic motion have been
established by Newtonian classical mechanics.

When a new physical phenomenon is observed, it is necessary to find
out how it fits into the established models and “laws” of physics. In the vast
majority of cases this involves a direct extension of the mathematics of
well-established models to the particular conditions of the new problem. In
fact, it is not uncommon for a scientist or engineer to predict that a new
phenomenon should occur before it is actually observed, simply by a careful
study and extension of existing models and laws. The beauty of science is that
natural phenomena are not isolated events but are related to other events
by a few analytically describable laws. However, it does happen occasionally
that a set of observations cannot be described in terms of existing theories. In
such cases it is necessary to develop models which are based as far as possible
on existing laws, but which contain new aspects arising from the new phe-
nomena. Postulating new physical principles is a serious business, and it is
done only when there is no possibility of explaining the observations with
established theory. When new assumptions and models are made, their jus-
tification lies in the following question: “Does the model describe precisely
the observations, and can reliable predictions be made based on the model?”
The model is good or poor depending on the answer to this question.

In the 1920s it became necessary to develop a new theory to describe
phenomena on the atomic scale. A long series of careful observations had
been made that clearly indicated that many events involving electrons and
atoms did not obey the classical laws of mechanics. It was necessary, there-
fore, to develop a new kind of mechanics to describe the behavior of particles
on this small scale. This new approach, called quantum mechanics, describes
atomic phenomena very well and also properly predicts the way in which
electrons behave in solids—our primary interest here. Through the years,
quantum mechanics has been so successful that now it stands beside the
classical laws as a valid description of nature.

A special problem arises when students first encounter the theory of
quantum mechanics. The problem is that quantum concepts are largely math-
ematical in nature and do not involve the “common sense” quality associated
with classical mechanics. At first, many students find quantum concepts dif-
ficult, not so much because of the mathematics involved, but because they
feel the concepts are somehow divorced from “reality.” This is a reasonable
reaction, since ideas which we consider to be real or intuitively satisfying are
usually based on our own observation. Thus the classical laws of motion are
easy to understand because we observe bodies in motion every day. On the
other hand, we observe the effects of atoms and electrons only indirectly,

2.1
INTRODUCTION
TO PHYSICAL
MODELS



54 Chapter 2

and naturally we have very little feeling for what is happening on the atomic
scale. It is necessary, therefore, to depend on the facility of the theory to
predict experimental results rather than to attempt to force classical analogs
onto the nonclassical phenomena of atoms and electrons.

Our approach in this chapter will be to investigate the important experi-
mental observations that led to the quantum theory, and then to indicate how
the theory accounts for these observations. Discussions of quantum theory must
necessarily be largely qualitative in such a brief presentation, and those topics
that are most important to solid state theory will be emphasized here. Several
good references for further individual study are given at the end of this chapter.

2.2
EXPERIMENTAL
OBSERVATIONS

Figure 2-1

The photoelectric
effect: (a) electrons
are ejected from
the surface of

a metal when
exposed to light
of frequency v in
a vacuum; (b) plot
of the maximum
kinetic energy of
ejected electrons
vs. frequency of
the incoming light.

The experiments that led to the development of quantum theory were con-
cerned with the interaction of light and matter. On the one hand, there were
phenomena such as interference or diffraction which clearly indicated that
light has a wave character as proposed by Huygens, in contrast to the particle
or corpuscular view of light proposed by Newton. But on the other hand,
many experiments at the turn of the 20" century clearly showed that a new
theory of light was needed.

2.2.1 The Photoelectric Effect

An important observation by Planck indicated that radiation from a heated
sample, known as blackbody radiation, is emitted in discrete units of energy
called quanta; the energy units were described by Av, where v is the fre-
quency of the radiation, and /4 is a quantity now called Planck’s constant
(h = 6.63 X 10* J-s).Soon after Planck developed this hypothesis, Einstein
interpreted an important experiment that clearly demonstrated the discrete
nature (quantization) of light. This experiment involved absorption of optical
energy by the electrons in a metal and the relationship between the amount of
energy absorbed and the frequency of the light (Fig.2-1). Let us suppose that
monochromatic light is incident on the surface of a metal plate in a vacuum.
The electrons in the metal absorb energy from the light, and some of the
electrons receive enough energy to be ejected from the metal surface into

m

Electron
[ )

Slope = h

Metal —q®

(a) (b)
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the vacuum. This phenomenon is called the photoelectric effect. If the energy
of the escaping electrons is measured, a plot can be made of the maximum
energy as a function of the frequency v of the incident light (Fig. 2-1b).

One simple way of finding the maximum energy of the ejected elec-
trons is to place another plate above the one shown in Fig. 2-1a and then cre-
ate an electric field between the two plates. The potential necessary to retard
all electron flow between the plates gives the energy E,,. For a particular
frequency of light incident on the sample, a maximum energy E,, is observed
for the emitted electrons. The resulting plot of E,, vs. v is linear, with a slope
equal to Planck’s constant. The equation of the line shown in Fig. 2-1b is

E, = hv — q® (2-1)

where ¢ is the magnitude of the electronic charge. The quantity ® (volts) is a
characteristic of the particular metal used. When @ is multiplied by the elec-
tronic charge, an energy (joules) is obtained which represents the minimum
energy required for an electron to escape from the metal into a vacuum. The
energy q® is called the work function of the metal. These results indicate
that the electrons receive an energy Av from the light and lose an amount of
energy gq® in escaping from the surface of the metal.

This experiment demonstrates clearly that Planck’s hypothesis was
correct—light energy is contained in discrete units rather than in a continu-
ous distribution of energies. Other experiments also indicate that, in addi-
tion to the wave nature of light, the quantized units of light energy can be
considered as localized packets of energy, called photons. (Interestingly, this
is reminiscent of the Newtonian picture.) We get the Planck relationship

E=h= (h/27)2mv) = fo (2-2a)

The photoelectron energy was found not to increase with increas-
ing light intensity; instead the number of photoelectrons increases. This is
in sharp contrast to what classical physics would have predicted. A higher
amplitude or intensity wave packs more energy, and should have increased
the photoelectron energy. Instead, we find in quantum physics that a higher
intensity light corresponds to a larger number of these photons, and hence
a larger number of photoelectrons. Some experiments emphasize the wave
nature of light, while other experiments reveal the discrete nature of pho-
tons. This wave—particle duality is fundamental to quantum processes and
does not imply an ambiguity in the theory.

This duality is seen beautifully in the Young’s double slit diffraction
experiment. We may recall that if monochromatic light is shone through two
narrow slits onto a screen, we see diffraction and interference patterns on the
screen corresponding to high intensity bright regions (constructive interfer-
ence) and low intensity dark regions (destructive interference). This is consis-
tent with the wave picture. Now, if the intensity of the light source is reduced,
so that just a few photons are emitted per second, we find that we do not get
an interference pattern. Instead, we get specks of light wherever the photon
hits the screen, because a photon cannot be split. There is a certain amount
of randomness in terms of where the photon hits. However, if we continue
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with the experiment, these random hits of the photons gradually build up the
interference pattern, corresponding to the wave picture. Statistically, there
are more photon hits in the bright regions of the screen, and fewer hits in the
dark spots. Similar results were subsequently observed with electrons and
other subatomic particles. This wave—particle duality is fundamental to the
development of quantum mechanics.

Hence, based on the wave—particle duality of light, Louis de Broglie
proposed that particles of matter (such as electrons) similarly could manifest
a wave character in certain experiments. This observation was confirmed
by the diffraction of electrons by the periodic array of atoms in a crystal
observed by Davisson and Germer. De Broglie proposed that a particle of
momentum p = myv has a wavelength given by

A=h/p=h/mv (2-2b)
=p=h/A= (W2m)2w/)) = hk

The Planck and de Broglie relationships are fundamental in quantum
physics and are valid for all situations and objects, including photons and
electrons. They connect the wave description of phenomena (frequency and
wavelength) to a particle description (energy and momentum).

The relation between frequency and wavelength (or equivalently, energy
and momentum), known as the dispersion relationship, however, is not
the same for different objects. For example, for photons, the wavelength (1)
is related to frequency by v = c/A=E = fiw = #(2mwv) = #2mw(c/\) =
fick = cp, where c is the speed of light. For electrons, it is an approximately
parabolic dispersion relationship, E(k), also known as the band structure, as
discussed in Chapter 3.

2.2.2 Atomic Spectra

One of the most valuable experiments of modern physics is the analysis of
absorption and emission of light by atoms. The de Broglie wave property of
electrons is key to understanding these experiments. For example, an electric
discharge can be created in a gas, so that the atoms begin to emit light with
wavelengths characteristic of the gas. We see this effect in a neon sign, which
is typically a glass tube filled with neon or a gas mixture, with electrodes for
creating a discharge. If the intensity of the emitted light is measured as a func-
tion of wavelength, one finds a series of sharp lines rather than a continuous
distribution of wavelengths. By the early 1900s the characteristic spectra for
several atoms were well known. A portion of the measured emission spectrum
for hydrogen is shown in Fig. 2-2, in which the vertical lines represent the
positions of observed emission peaks on the wavelength scale. Photon energy
hv is then related to wavelength by the dispersion relation A = c/v.

The lines in Fig. 2-2 appear in several groups labeled the Lyman,
Balmer,and Paschen series after their early investigators. Once the hydrogen
spectrum was established, scientists noticed several interesting relationships
among the lines. The various series in the spectrum were observed to follow
certain empirical forms:
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Figure 2-2

Some important
lines in the
emission spectrum
of hydrogen.

=5 Figure 2-3
s Es Ess n =4 Relationships
En E E 3 Paschen among photon
— n=3 energies in
the hydrogen
E E3 Es Balmer spectrum.
—— n =2
En Lyman
n=1
. — 1 1 p—
Lyman: v = cR ?—E,n—2,3,4,... (2-3a)
1 1
Balmer: v =cR|5;— )., n=23,475,... (2-3b)
2 n
1 1
Paschen: v =cR|(5— =), m=4,5,6, (2-3¢)
3 n
where R is a constant called the Rydberg constant (R = 109,678 cm ™). If the
photon energies Av are plotted for successive values of the integer n, we notice
that each energy can be obtained by taking sums and differences of other pho-
ton energies in the spectrum (Fig. 2-3). For example, E,, in the Balmer series
is the difference between E,; and E,; in the Lyman series. This relationship
among the various series is called the Ritz combination principle. Naturally,
these empirical observations stirred a great deal of interest in constructing a
comprehensive theory for the origin of the photons given off by atoms.
The results of emission spectra experiments led Niels Bohr to construct a 2.3

model for the hydrogen atom, based on the mathematics of planetary sys-
tems. If the electron in the hydrogen atom has a series of planetary-type
orbits available to it, it can be excited to an outer orbit and then can fall to
any one of the inner orbits, giving off energy corresponding to one of the
lines of Fig. 2-3. To develop the model, Bohr made several postulates:

THE BOHR MODEL
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1. Electrons exist in certain stable, circular orbits about the nucleus. This

assumption implies that the orbiting electron does not give off radia-
tion as classical electromagnetic theory would normally require of
a charge experiencing angular acceleration; otherwise, the electron
would not be stable in the orbit but would spiral into the nucleus as
it lost energy by radiation.

The electron may shift to an orbit of higher or lower energy, thereby
gaining or losing energy equal to the difference in the energy levels
(by absorption or emission of a photon of energy Av).

S )

- hV:Ez_El
_t  F (2_4)

The angular momentum p, of the electron in an orbit is always an
integral multiple of Planck’s constant divided by 27 (h /27 is often
abbreviated 7 for convenience). This assumption,

pe=mnh, mn=1,234,... (2-5)

is necessary to obtain the observed results of Fig. 2-3. Although
Bohr proposed this ad hoc relationship simply to explain the data,
one can see that this is equivalent to having an integer number of
de Broglie wavelengths fit within the circumference of the electron
orbit. These were called pilot waves, guiding the motion of the elec-
trons around the nucleus. The de Broglie wave concept provided the
inspiration for the Schrédinger wave equation in quantum mechan-
ics discussed in Section 2.4.

If we visualize the electron in a stable orbit of radius r about the proton

of the hydrogen atom, we can equate the electrostatic force between the
charges to the centripetal force:

A

~
//7\
/ e
/
.
“ o
\
\ /
q2

mv?
Kr? r

(2-6)
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where K = 4me, in MKS units, m is the mass of the electron, and v is its
velocity. From assumption 3 we have

Py = mvr = nh (2-7)

Since n takes on integral values, r should be denoted by r, to indicate
the nth orbit. Then Eq. (2-7) can be written

2ﬁ2
miv? = er (2-8)
Substituting Eq. (2-8) in Eq. (2-6) we find that
2 252

1 fi
L = . nT (279)

Krﬁ mr, r,

Kn’#?
ry = ot (2-10)
mq

for the radius of the nth orbit of the electron. Now we must find the expres-
sion for the total energy of the electron in this orbit, so that we can calculate
the energies involved in transitions between orbits.

From Egs. (2-7) and (2-10) we have

n7
=— 2-11
v mr, ( )
nﬁqZ q2
= = 2-12
V7 ke T Knh (-12)
Therefore, the kinetic energy of the electron is
1 mq*
K. E. = Emvz = m (2713)

The potential energy is the product of the electrostatic force and the
distance between the charges:

2 4
q mq

PE =1 = 2-14
Kr, K*n’#? ( )

Thus the total energy of the electron in the nth orbit is
mq*
2K 0H?

E,=K.E.+P.E. = — (2-15)

The critical test of the model is whether energy differences between
orbits correspond to the observed photon energies of the hydrogen
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Figure 2-4 n=>5
Electron orbits
and transitions in
the Bohr model Paschen
of the hydrogen
atom. Orbit
spacing is not
drawn to scale.

spectrum. The transitions between orbits corresponding to the Lyman,
Balmer, and Paschen series are illustrated in Fig. 2—4. The energy difference
between orbits n; and n, is given by

4
mq 1 1
EnZ - Enl = 2 K22 (ll% - ll%) (2716)

The frequency of light given off by a transition between these orbits is

4
mq 1 1 )
=\l Il5 - 2-17
= {2]@;1%} (n% n? @17
EXAMPLE 2-1 —
Show Eq. (2-17) corresponds to Eq. (2-3). That is, show:c* R = m
SOLUTION From Eq. (2-17) and the solution to Eq. (2-3),
2.998-10°% 1 1
1/2123: 99810 ER 23.29°1015Hz-<2— 2)
A > n; n, ng n
911-10°m- > 5
n —m
From Eq. (2-3),
1 1 1 1
= c-R-<2 - 2) = 2.998-1082‘-1.097-107,}1-<2 - 2)
n m n  m
1 1
=3.29-10% Hz- (2 = 2>
n, n
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The pre-factor is essentially the Rydberg constant R times the speed of
light c¢. A comparison of Eq. (2-17) with the experimental results summed up
by Eq. (2-3) indicates that the Bohr theory provides a good model for elec-
tronic transitions within the hydrogen atom, as far as the early experimental
evidence is concerned.

Whereas the Bohr model accurately describes the gross features of
the hydrogen spectrum, it does not include many fine points. For example,
experimental evidence indicates some splitting of levels in addition to the
levels predicted by the theory. Also, difficulties arise in extending the model
to atoms more complicated than hydrogen. Attempts were made to modify
the Bohr model for more general cases, but it soon became obvious that a
more comprehensive theory was needed. However, the partial success of the
Bohr model was an important step toward the eventual development of the
quantum theory. The concept that electrons are quantized in certain allowed
energy levels, and the relationship of photon energy and transitions between
levels, had been established firmly by the Bohr theory.
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The principles of quantum mechanics were developed from two different
points of view at about the same time (the late 1920s). One approach, devel-
oped by Heisenberg, utilizes the mathematics of matrices and is called matrix
mechanics. Independently, Schrédinger developed an approach utilizing a
wave equation, now called wave mechanics. These two mathematical formu-
lations appear to be quite different. However, closer examination reveals
that beyond the formalism, the basic principles of the two approaches are the
same. It is possible to show, for example, that the results of matrix mechan-
ics reduce to those of wave mechanics after mathematical manipulation. We
shall concentrate here on the wave mechanics approach, since solutions to
a few simple problems can be obtained with it, involving less mathematical
discussion.

2.4.1 Probability and the Uncertainty Principle

It is impossible to describe with absolute precision events involving indi-
vidual particles on the atomic scale. Instead, we must speak of the average
values (expectation values) of position, momentum, and energy of a particle
such as an electron. It is important to note, however, that the uncertainties
revealed in quantum calculations are not based on some shortcoming of the
theory. In fact, a major strength of the theory is that it describes the proba-
bilistic nature of events involving atoms and electrons. The fact is that such
quantities as the position and momentum of an electron do not exist apart
from a particular uncertainty. The magnitude of this inherent uncertainty is
described by the Heisenberg uncertainty principle:'

'This is often called the principle of indeterminacy. This is a better term, since the parameters cannot be
determined with better accuracy than specified in these equations.

24
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In any measurement of the position and momentum of a particle,
the uncertainties in the two measured quantities will be related by

(Ax) (Ap,) = /2] (2-18)

Similarly, the uncertainties in an energy measurement will be
related to the uncertainty in the time at which the measurement
was made by

[(AE)(AD) = #/2] (2-19)

These limitations indicate that simultaneous measurement of posi-
tion and momentum or of energy and time is inherently inaccurate to
some degree. Of course, Planck’s constant 4 is a rather small number
(6.63 X 107*J-s), and we are not concerned with this inaccuracy in the mea-
surement of x and p, for a truck, for example. On the other hand, measure-
ments of the position of an electron and its speed are seriously limited by
the uncertainty principle.

One implication of the uncertainty principle is that we cannot properly
speak of the position of an electron, for example, but must look for the “prob-
ability” of finding an electron at a certain position. Thus one of the important
results of quantum mechanics is that a probability density function can be
obtained for a particle in a certain environment, and this function can be
used to find the expectation value of important quantities such as position,
momentum, and energy. We are familiar with the methods for calculating
discrete (single-valued) probabilities from common experience. For example,
it is clear that the probability of drawing a particular card out of a random
deck is s, and the probability that a tossed coin will come up heads is Y.
The techniques for making predictions when the probability varies are less
familiar, however. In such cases it is common to define a probability of find-
ing a particle within a certain volume. Given a probability density function
P(x) for a one-dimensional problem, the probability of finding the particle
in a range from x to x + dx is P(x)dx. Since the particle will be somewhere,
this definition implies that

/ C)OP()c)dx =1 (2-20)

if the function P(x) is properly chosen. Equation (2-20) is implied by stating
that the function P(x) is normalized (i.e., the integral equals unity).

To find the average value of a function of x, we need only multiply the
value of that function in each increment dx by the probability of finding the
particle in that dx and sum over all x. Thus the average value of f(x) is

() = / f)P()dx (2-21)

If the probability density function is not normalized, this equation
should be written
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/ ’ flx)P(x)dx

: _/:P(x)dx

2.4.2 The Schrédinger Wave Equation

{(fx)) (2-21b)

There are several ways to develop the wave equation by applying quantum
concepts to various classical equations of mechanics. One of the simplest
approaches is to consider a few basic postulates, develop the wave equation
from them, and rely on the accuracy of the results to serve as a justification
of the postulates. In more advanced texts these assumptions are dealt with
in more convincing detail.

Basic Postulates

1. Each particle in a physical system is described by a wavefunction W (x,
¥, 7, t). This function and its space derivative (6W/ox + dW/oy + dW/dz)
are continuous, finite, and single valued.

2. Indealing with classical quantities such as energy £ and momentum
p, we must relate these quantities with abstract quantum mechanical
operators defined in the following way:

Classical variable =~ Quantum operator
X X
fx) fx)
p(x) ho
J ox
E hod
_; P

and similarly for the other two directions.

3. The probability of finding a particle with wavefunction ¥ in the vol-
ume dx dy dz is V'V dx dy dz.?2 The product ¥V is normalized
according to Eq. (2-20) so that

/‘I’*‘I’dxdydz=1

and the average value ( Q) of any variable Q is calculated from the
wavefunction by using the operator form Q,, defined in postulate 2:

[

(0) =/ v'Q,, ¥ dx dy dz

2P is the complex conjugate of W, obtained by reversing the sign on each . Thus, (e¥)* =e .
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Once we find the wavefunction V¥ for a particle, we can calculate its
average position, energy, and momentum, within the limits of the uncertainty
principle. Thus, a major part of the effort in quantum calculations involves
solving for ¥ within the conditions imposed by a particular physical sys-
tem. We notice from assumption 3 that the probability density function is
VW, or [V

The classical equation for the energy of a particle can be written:

Kinetic energy + potential energy
1
2 —
— + \ = E
2m P

total energy (2-22)

In quantum mechanics we use the operator form for these variables
(postulate 2); the operators are allowed to operate on the wavefunction W. For
a one-dimensional problem Eq. (2-22) becomes®

A {C)) _hoW(x, 1) (2-23)

P + Vx)W(x, 1) =

which is the Schrodinger wave equation. In three dimensions the equation is

ﬁZ
vy ooy = SR (2-24)
2m j ot
where V2V is
) P )
P Y
)y Z

The wavefunction W in Egs. (2-23) and (2-24) includes both space and
time dependencies. It is common to calculate these dependencies separately
and combine them later. Furthermore, many problems are time independent,
and only the space variables are necessary. Thus we try to solve the wave
equation by breaking it into two equations by the technique of separation
of variables. Let W (x, t) be represented by the product ys(x)d(¢). Using this
product in Eq. (2-23) we obtain

2
a0 VR0 = g™ 20s)

Now the variables can be separated to obtain the time-dependent
equation in one dimension,

do(?)
dt

+——Mg—0 (2-26a)

3The operational interpretation of (3/x)? is the second-derivative form ? /ax?; the square of jis —1.
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and the time-independent equation,
{ w o d

“2m dx

+ V(X)]'JJ(X) = E(x) (2-26b)

This type of equation, where an operator operating on a function
equals a constant times the function, is known as an eigenvalue equation,
from the German word eigen meaning “proper.” We can show that the sepa-
ration constant E corresponds to the total energy (kinetic plus potential) of
the particle. We get different eigenfunctions i, corresponding to different
eigenenergies, E,. Since the time-dependent Equation (2-26a) is a first-order
differential equation,its solution is simply ¢(t) = exp (—jE/ht) = exp (—jwrt)
(using the Planck relation). This form is the universal time dependence of all
eigenfunctions.

We can show in quantum mechanics that any arbitrary wavefunction can
be written as a linear combination of these eigenfunctions, with pre-factors
or weighting coefficients that depend on the initial conditions. As an analogy,
remember that an arbitrary vector, V, can be expanded as a linear combina-
tion in terms of unit vectors or basis vectors along the x, y, and z axes:

V=Vx+ Vy+ Vz (2-27a)

with coefficients V,, V,,and V..

A wavefunction can similarly be written as a linear combination of
various eigenfunctions, with appropriate pre-factors, each evolving in time
as shown above:

Do t) = el exp (—jE /i) (2-27b)

Hence, eigenfunctions are sometimes also known as basis functions. But
unlike real vectors expandable in terms of three basis vectors in real space,
these eigenfunctions span an infinite number of dimensions in an abstract space
known as Hilbert space. If we measure the energy of the particle, we will get one
of these eigenenergies with a probability given by c,” If we keep repeating these
measurements, each time we get a different eigenenergy with corresponding
probabilities, c,”. This leads to the famous uncertainties in quantum mechan-
ics. The average of many quantum mechanical measurements will correspond
to the classical physics result. These equations are the basis of wave mechan-
ics. From them we can determine the wavefunctions for particles in various
simple systems. The only thing that changes from one quantum mechanical
problem to the other is the form of V(x). For calculations involving electrons,
the potential term V(x) usually results from an electrostatic or magnetic field.

2.4.3 Potential Well Problem

It is quite difficult to find solutions to the Schrodinger equation for most
realistic potential fields. One can solve the problem with some effort for the
hydrogen atom, for example, but solutions for more complicated atoms are
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Figure 2-5

The problem of

a particle in a
potential well:

(a) potential
energy diagram;
(b) wavefunctions
in the first three
quantum states;
(c) probability
density
distribution for the
second state.
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hard to obtain. There are several important problems, however, which illus-
trate the theory without complicated manipulation. The simplest problem is
the potential energy well with infinite boundaries. Let us assume a particle
is trapped in a potential well with V(x) zero except at the boundariesx = 0
and L, where it is infinitely large (Fig. 2-5a):

Vix) =0,0<x <L

2-28
V(x) = o, x=0, L ( )
Inside the well we set V(x) = 0in Eq. (2-26b):
d 2
jgx+§%mﬂ=o,o<x<L (2-29)
X

This is the wave equation for a free particle; it applies to the potential
well problem in the region with no potential V(x).

Possible solutions to Eq. (2-29) are sin kx and cos kx, where k is
V2mE /#. In choosing a solution, however, we must examine the boundary
conditions. The only allowable value of s at the walls is zero. Otherwise, there
would be a nonzero [{s* outside the potential well, which is impossible because
a particle cannot penetrate an infinite barrier. Therefore, we must choose only
the sine solution and define k such that sin kx goes to zero atx = L:

V2mE

h

= A sin kx, k = (2-30)

The constant A is the amplitude of the wavefunction and will be evalu-
ated from the normalization condition (postulate 3). If {s is to be zero at
x = L, then k must be some integral multiple of m/L:

nm
k=-",

=1,2,3, ...
L n s Ly Iy

(2-31)

From Egs. (2-30) and (2-31) we can solve for the total energy E, for
each value of the integer n:
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V2mE, nm

P (2-32)
2 ZﬁZ
E, = '; ’TLZ (2-33)
m

Thus for each allowable value of n the particle energy is described by
Eq. (2-33). We notice that the energy is quantized. Only certain values of
energy are allowed. The integer n is called a quantum number; the particular
wavefunction {5, and corresponding energy state E, describe the quantum
state of the particle.

The quantized energy levels described by Eq. (2-33) appear in a variety
of small-geometry structures encountered in semiconductor devices. We shall
return to this potential well problem (often called the “particle-in-a-box”
problem) in later discussions.

The constant A is found from postulate 3:

- L nm \? L
/ U* dx = / Az(sin x) dx = A>— (2-34)
. . L 2

Setting Eq. (2-34) equal to unity we obtain

2 2 nmw
=7 = /7 sin — -35
A I U, Lsm T (2-35)

The first three wavefunctions s, {5,, and {3 are sketched in Fig. 2-5b.
The probability density function "y, or [%, is sketched for s, in Fig. 2-5c.

Another useful form of the potentialis V(x) = kx?, a parabolic poten-
tial well, which corresponds to the simple harmonic oscillator (SHO). The
shape of the wavefunctions and the eigenenergies are obviously going to be
different from the rectangular potential well above. The eigenenergies in
this case are found to be equally spaced, and given by E, = (n + 1/2) fw
for various positive integer values of n, corresponding to n quanta of these
SHO. In Chapter 3, we will discuss elastic waves in a lattice due to simple
harmonic oscillations of atoms in a parabolic inter-atomic potential, whose
quantized units are known as phonons (in analogy with the photons we dis-
cussed above). The energy of these phonons is given by #iw.

Given a plane wave = A exp(jk.x), what is the expectation value for
P, the x-component of momentum?

EXAMPLE 2-2
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(h d )
/ A*e]k,x(.> Ak dx
] ox

—©

(pe) = = (fik,) after normalization

/ | A |2e 7% ek dx

SOLUTION
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This is the de Broglie relationship. If we try to evaluate these integrals
directly, we run into the problem that both numerator and denominator
tend to infinity, because an ideal plane wave is strictly not a normalizable
wavefunction. The trick to use is to choose the limits of integration from,
say, —L /2 to + L /2 in a region of length L. The factor L cancels out in
the numerator and denominator. Then we can consider L approaches
infinity. For wavefunctions that are normalizable, such a mathematical
“trick” does not have to be used.

If we include the time dependence also, we get ¥ = A exp(jk.x—jwt).
We can also calculate the expectation value of the energy operator,

oo

A*ej(klxwt)( — ﬁa) Aej(k,JC7wt) dx
j o

(E) ===

ee]
/ | A |2e " ek dx
—o0

(hw) after normalization

which is the Planck relation.

2.4.4 Tunneling

The wavefunctions are relatively easy to obtain for the potential well with
infinite walls, since the boundary conditions force i to zero at the walls. A
slight modification of this problem illustrates a principle that is very impor-
tant in some solid state devices—the quantum mechanical funneling of an
electron through a barrier of finite height and thickness. Let us consider
the potential barrier of Fig. 2-6. If the barrier is not infinite, the boundary
conditions do not force s to zero at the barrier. Instead, we must use the
condition that ¢ and its slope d{s/dx are continuous at each boundary of the
barrier (postulate 1). Thus ¢ must have a nonzero value within the barrier
and also on the other side. Since { has a value to the right of the barrier,
" exists there also, implying that there is some probability of finding the
particle beyond the barrier. We notice that the particle does not go over
the barrier; its total energy is assumed to be less than the barrier height V.
The mechanism by which the particle “penetrates” the barrier is called tun-
neling. However, no classical analog, including classical descriptions of tun-
neling through barriers, is appropriate for this effect. Quantum mechanical
tunneling is intimately bound to the uncertainty principle. If the barrier is
sufficiently thin, we cannot say with certainty that the particle exists only on
one side. However, the wavefunction amplitude for the particle is reduced by
the barrier as Fig. 2-6 indicates, so that by making the thickness W greater,
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we can reduce s on the right-hand side to the point that negligible tunneling
occurs. Tunneling is important only over very small dimensions, but it can be
of great importance in the conduction of electrons in solids, as we shall see
in Chapters 5, 6, and 10.

A novel electronic device called the resonant tunneling diode has been
developed. This device operates by tunneling electrons through “particle in a
potential well” energy levels of the type described in Section 2.4.3.
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Figure 2-6
Quantum
mechanical
tunneling: (a)
potential barrier
of height V, and

thickness W; (b)
probability density
for an electron
with energy

E <V, indicating
a nonzero

value of the
wavefunction
beyond the
barrier.

The Schrodinger equation describes accurately the interactions of particles
with potential fields, such as electrons within atoms. Indeed, the modern
understanding of atomic theory (the modern atomic models) comes from
the wave equation and from Heisenberg’s matrix mechanics. It should be
pointed out, however, that the problem of solving the Schrédinger equa-
tion directly for complicated atoms is extremely difficult. In fact, only the
hydrogen atom is generally solved directly; atoms of atomic number greater
than one are usually handled by techniques involving approximations. Many
atoms such as the alkali metals (Li, Na, etc.), which have a neutral core with a
single electron in an outer orbit, can be treated by a rather simple extension
of the hydrogen atom results. The hydrogen atom solution is also important
in identifying the basic selection rules for describing allowed electron energy
levels. These quantum mechanical results must coincide with the experimen-
tal spectra, and we expect the energy levels to include those predicted by
the Bohr model. Without actually working through the mathematics for the
hydrogen atom, in this section we shall investigate the energy level schemes
dictated by the wave equation.

2.5

ATOMIC
STRUCTURE AND
THE PERIODIC
TABLE



70

Chapter 2

Figure 2-7
The spherical
coordinate
system.

2.5.1 The Hydrogen Atom

Finding the wavefunctions for the hydrogen atom requires a solution of
the Schrodinger equation in three dimensions for a Coulombic potential
field. Since the problem is spherically symmetric, the spherical coordinate
system is used in the calculation (Fig.2-7). The term V(x, y, z) in Eq. (2-24)
must be replaced by V(r, 6, ¢), representing the Coulomb potential which
the electron experiences in the vicinity of the proton. The Coulomb potential
varies only with r in spherical coordinates
2

V(r, 6, &) = V(r) = —(zmeo)”’7 (2-36)

as in Eq. (2-14).
When the separation of variables is made, the time-independent equa-
tion can be written as

U(r, 6, &) = R(r)O(B)D(d) (2-37)

Thus the wavefunctions are found in three parts. Separate solutions
must be obtained for the r-dependent equation, the #-dependent equation,
and the ¢-dependent equation. After these three equations are solved, the
total wavefunction i is obtained from the product.

As in the simple potential well problem, each of the three hydrogen
atom equations gives a solution which is quantized. Thus we would expect a
quantum number to be associated with each of the three parts of the wave
equation. As an illustration, the ¢-dependent equation obtained after sepa-
ration of variables is

d*®

F& + m2<I) =0 (2*38)
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where m is a quantum number. The solution to this equation is

D, (b) = Ae™ (2-39)
where A can be evaluated by the normalization condition, as before:
2
| @@ -1 (2-40)
0
2 2m
Az/ e Tmbe™ ddy = AZ/ do = 2mA? (2-41)
0 0

Thus the value of A is

A= \/12; (2-42)
and the ¢-dependent wavefunction is
D, (b) = Le’““” (2-43)
Vo

Since values of ¢ repeat every 27 radians, @ should repeat also. This
occurs if m is an integer, including negative integers and zero. Thus the wave-
functions for the ¢-dependent equation are quantized with the following
selection rule for the quantum numbers:

m= ..., -3 -2 —1,0, +1, +2, +3,... (2-44)

By similar treatments, the functions R(r) and ®(6) can be obtained,
each being quantized by its own selection rule. For the r-dependent equa-
tion, the quantum number n can be any positive integer (not zero), and for
the 6-dependent equation the quantum number / can be zero or a posi-
tive integer. However, there are interrelationships among the equations
which restrict the various quantum numbers used with a single wavefunc-
tion yrnlm:

Bum(r, 0, &) = R, (r)0,(6)P,,,($) (2-45)

These restrictions are summarized as follows:
n=1,23, ... (2-46a)
1=0,1,2, ...,(m—1) (2-46b)
m= -1 ...,-2, —-1,0, +1, +2, ..., +I (2—-46c¢)

In addition to the three quantum numbers arising from the three parts
of the wave equation, there is an important quantization condition on the
“spin” of the electron. Investigations of electron spin employ the theory of
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relativity as well as quantum mechanics; therefore, we shall simply state that
the intrinsic angular momentum s of an electron with ,,;,, specified is

h

s= 42 (2-47)

That is,in units of %, the electron has a spin of %, and the angular momen-
tum produced by this spin is positive or negative depending on whether the
electron is “spin up” or “spin down.” The important point for our discussion
is that each allowed energy state of the electron in the hydrogen atom is
uniquely described by four quantum numbers: n, /,m and s.4

Using these four quantum numbers, we can identify the various states
which the electron can occupy in a hydrogen atom. The number n, called
the principal quantum number, specifies the “orbit” of the electron in Bohr
terminology. Of course, the concept of orbit is replaced by probability den-
sity functions in quantum mechanical calculations. It is common to refer to
states with a given principal quantum number as belonging to a shell rather
than an orbit.

There is considerable fine structure in the energy levels about the Bohr
orbits, due to the dictates of the other three quantum conditions. For example,
an electron withm = 1 (the first Bohr orbit) can have only/ = 0 and m = 0
according to Eq. (2-46), but there are two spin states allowed from
Eq. (2-47). Forn = 2,/ can be 0 or 1,and m can be —1, 0, or +1. The vari-
ous allowed combinations of quantum numbers appear in the first four col-
umns of Table 2-1. From these combinations it is apparent that the electron
in a hydrogen atom can occupy any one of a large number of excited states
in addition to the lowest (ground) state ;.. Energy differences between
the various states properly account for the observed lines in the hydrogen
spectrum.

2.5.2 The Periodic Table

The quantum numbers discussed in Section 2.5.1 arise from the solutions to
the hydrogen atom problem. Thus the energies obtainable from the wave-
functions are unique to the hydrogen atom and cannot be extended to more
complicated atoms without appropriate alterations. However, the quantum
number selection rules are valid for more complicated structures, and we
can use these rules to gain an understanding of the arrangement of atoms in
the periodic table of chemical elements. Without these selection rules, it is
difficult to understand why only two electrons fit into the first Bohr orbit of
an atom, whereas eight electrons are allowed in the second orbit. After even
the brief discussion of quantum numbers given above, we should be able to
answer these questions with more insight.

Before discussing the periodic table, we must be aware of an important
principle of quantum theory, the Pauli exclusion principle. This rule states

“In many fexts, the numbers we have called m and s are referred to as m; and m,, respectively.
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Table 2-1  Quantum numbers to n = 3 and allowable states for the electron in a hydrogen
atom: The first four columns show the various combinations of quantum numbers allowed by
the selection rules of Eq. (2-46); the last two columns indicate the number of allowed states
(combinations of n, I, m, and s) for each I (subshell) and n (shell, or Bohr orbit).

Allowable states Allowable states
n ) m s/t in subshell in complete shell
1 0 0 +2 2 2
2 0 0 =3 2
1
1 -1 = 3
0 =2 6
1
1 +2
3 0 0 =3 2
1
1 -1 =
0 =3 6
1
1 +2
_ +1
2 2 *2 18
1
-1 + 5
1
0 3 10
1 +1
2
2 +1
2

that no two electrons in an interacting system® can have the same set of quan-
tum numbers n, /, m, and s. In other words, only two electrons can have the
same three quantum numbers n, /, and m, and those two must have opposite
spin. The importance of this principle cannot be overemphasized; it is basic
to the electronic structure of all atoms in the periodic table. One implica-
tion of this principle is that by listing the various combinations of quantum
numbers, we can determine into which shell each electron of a complicated
atom fits, and how many electrons are allowed per shell. The quantum states
summarized in Table 2-1 can be used to indicate the electronic configura-
tions for atoms in the lowest energy state.

In the first electronic shell (n = 1), / can be only zero since the maxi-
mum value of / is always n — 1. Similarly, m can be only zero since m runs
from the negative value of I to the positive value of I. Two electrons with
opposite spin can fit in this s, state; therefore, the first shell can have at
most two electrons. For the helium atom (atomic number Z = 2) in the

®An interacting system is a system in which electron wave functions overlap—in this case, an atom with
two or more electrons.

73



74

Chapter 2

Table 2-2  Electronic configurations for atoms in the ground state.

n=1 2 3 4
=0 |0 1|0 1 2|01
Atomic 1s | 2s2p | 3s 3p 3d | 4s 4p
number Ele-

(Z) ment Number of electrons Shorthand notation

1 H 1 1s1

2 He 2 152

3 Li 1 1s2 251

4 Be 2 152 252

5 B 21 152 252 2p!

6 C helium core, | 2 2 152 252 2p2

7 N 2electrons | 2 3 152 252 2p3

8§ O 2 4 152 252 2p#

9 F 25 152 252 2p5

10 Ne 2.6 152 252 2p6

11 Na 1 [Ne] 3sl

12 Mg 2 3s2

13 Al 21 352 3pl

14 Si neon core, 2 2 352 3p2

15 P 10 electrons 2 3 352 3p3

6 S 2 4 352 3p4

17 a 25 352 3p5

18 Ar 2 6 352 3p6

19 K 1 [Ar] 451

20 Ca 2 452

21 Sc 1|2 3dl 452

2 T 2 | 2 3d2 452
2V 3|2 3d3 452

24 Cr 511 3d5 451

25 Mn 5102 3d5 452

26 Fe 6 |2 3d6 452

27 Co argon core, 712 3d7 452

28 Ni 18 electrons 8 | 2 348 4s2

29 Cu 10 |1 3d10 451

30 Zn 10 |2 3d10 452

31 Ga 1021 3d10 452 4p!
32 Ge 102 2 3d10 452 4p2
33 As 102 3 3d10 452 4p3
M Se 10 |2 4 3d10 452 4p4
3 B 1012 s 3d10 452 4pS
6 K 1012 6 3d10 452 4p6

ground state, both electrons will be in the first Bohr orbit (n =

1), both will

have I = 0 and m = 0, and they will have opposite spin. Of course, one or
both of the He atom electrons can be excited to one of the higher energy
states of Table 2-1 and subsequently relax to the ground state, giving off a
photon characteristic of the He spectrum.
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As Table 21 indicates, there can be two electrons in the I = 0 subshell,
six electrons when ! = 1, and ten electrons for I = 2.The electronic configu-
rations of various atoms in the periodic table can be deduced from this list of
allowed states. The ground state electron structures for a number of atoms
are listed in Table 2-2. There is a simple shorthand notation for electronic
structures which is commonly used instead of such a table. The only new
convention to remember in this notation is the naming of the / values:

1=0,1,2,3,4, ...

sp,dfg ...

This convention was created by early spectroscopists who referred
to the first four spectral groups as sharp, principal, diffuse, and fundamen-
tal. Alphabetical order is used beyond f With this convention for /, we can
write an electron state as follows:

—6 electrons in the 3p subshell
6
/3p

m=3) (=1

For example, the total electronic configuration for Si (Z = 14) in the
ground state is

1s225%2p%3573p?

We notice that Si has a closed Ne configuration (see Table 2-2) plus
four electrons in an outer n = 3 orbit (3s>3p?). These are the four valence
electrons of Si; two valence electrons are in an s state and two are in a p
state. The Si electronic configuration can be written [Ne] 3s?3p? for conve-
nience, since the Ne configuration 1s*2s?2p® forms a closed shell (typical of
the inert elements).

Figure 2-8a shows the orbital model of a Si atom, which has a nucleus
consisting of 14 protons (with a charge of +14) and neutrons, 10 core electrons
inshellsn = 1 and 2,and 4 valence electrons in the 3s and 3p subshells. Figure
2-8b shows the energy levels of the various electrons in the Coulombic poten-
tial well of the nucleus. Since unlike charges attract each other, there is an
attractive potential between the negatively charged electrons and the posi-
tively charged nucleus. As indicated in Eq. (2-36),a Coulomb potential varies
as 1 /r as a function of distance from the charge, in this case the Si nucleus. The
potential energy gradually goes to zero when we approach infinity. We end up
getting “particle-in-a-box” states for these electrons in this potential well, as
discussed in Section 2.4.3 and Eq. (2-33). Of course, in this case the shape of
the potential well is not rectangular, as shown in Fig. 2-5a, but Coulombic, as
shown in Fig. 2-8b. Therefore, the energy levels have a form closer to those of
the H atom as shown in Eq. (2-15), rather than in Eq. (2-33).

If we solve the Schrodinger equation for the Si atom as we did in
Section 2.5.1 for the H atom, we can get the radial and angular dependence of
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Figure 2-8

Electronic structure and energy levels in a Si atom: (a) the orbital model of a Si atom showing the

10 core electrons (n = 1 and 2), and the four valence electrons (n = 3); (b) energy levels in the
Coulombic potential of the nucleus are also shown schematically.
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py" . (sp3) hybrid

the wavefunctions or “orbitals” of the electrons. Let us focus on the valence
shell, n = 3, where we have two 3s and two 3p electrons. It turns out that
the 3s orbital is spherically symmetric with no angular dependence, and is
positive everywhere. It can hold 2 electrons with opposite spin according to
the Pauli principle. There are 3p orbitals which are mutually perpendicu-
lar. These are shaped like dumbbells with a positive lobe and a negative lobe
(Fig. 2-9). The 3p subshell can hold up to 6 electrons, but in the case of Si
has only 2. Interestingly, in a Si crystal when we bring individual atoms very
close together, the s and p orbitals overlap so much that they lose their dis-
tinct character, and lead to four mixed sp* orbitals. The negative part of the
p orbital cancels the s-type wavefunction, while the positive part enhances
it, thereby leading to a “directed” bond in space. As shown in Fig. 2-9, these
linear combinations of atomic orbitals (LCAO) or “hybridized” sp® orbit-
als point symmetrically in space along the four tetragonal directions (see
Fig. 1-9). In Chapter 3 we shall see that these “directed” chemical bonds
are responsible for the tetragonal diamond or zinc blende lattice structure
in most semiconductors. They are also very important in the understanding
of energy bands, and in the conduction of charges in these semiconductors.

The column IV semiconductor Ge (Z = 32) has an electronic struc-
ture similar to Si, except that the four valence electrons are outside a closed
n = 3 shell. Thus the Ge configuration is [Ar] 3d'%4s’4p*. There are sev-
eral cases in Table 2-2 that do not follow the most straightforward choice
of quantum numbers. For example, we notice that in K (Z= 19) and Ca
(Z = 20) the 4s state is filled before the 3d state;in Cr (Z = 24) and Cu
(Z = 29) there is a transfer of an electron back to the 3d state. These excep-
tions, required by minimum energy considerations, are discussed more fully
in most atomic physics texts.
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Figure 2-9
Orbitals in a

Si atom: The
spherically
symmetric “s” type
wavefunctions

or orbitals

are positive
everywhere, while
the three mutually
perpendicular
“p" type orbitals
(P Py, pa) are
dumbbell shaped
and have a
positive lobe

and a negative
lobe. The four

sp® “hybridized”
orbitals, only

one of which is
shown here, point
symmetrically in
space and lead
to the diamond
lattice in Si.

2.1 In classical physics, matter (including electrons) was described as particles by
Newtonian mechanics, while /ight was described as waves, consistent with phe-
nomena such as interference and diffraction of light.

2.2 Phenomena such as blackbody radiation and the photoelectric effect forced
Planck and Einstein to introduce a particle aspect to light (photons). Analysis
of atomic spectra then led Bohr and de Broglie to analogously introduce a
wave aspect to subatomic particles such as electrons. This led to a wave—particle

SUMMARY
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2.3

24

2.5

duality and a quantum mechanical description of nature by Heisenberg and
Schrodinger.

To understand how electrons move in semiconductor devices or interact with
light, we need to determine a complex wavefunction of the electron. The wave-
function has to be mathematically well behaved, consistent with the interpre-
tation that the wavefunction magnitude squared is the probability density of
finding the electron in space and time.

We get the wavefunction by solving Schrodinger’s time-dependent partial
differential equation. The application of boundary conditions (the potential
energy profile) allows certain (proper) eigenfunctions as valid solutions, with
corresponding eigenenergies, determined by allowed quantum numbers. Results
of physical measurements are no longer deterministic (as in classical mechan-
ics), but probabilistic, with an expectation value given by an average using the
wavefunction of appropriate quantum mechanical operators corresponding to
physical quantities.

Application of these principles to the simplest atom (H) introduces four
quantum numbers—n, I, m, and s, which are subject to appropriate quantum
mechanical rules. Extrapolating these ideas to more complicated atoms such
as Si leads to the idea of electronic structure and the periodic table, if we apply
the Pauli exclusion principle that one can have a maximum of one electron for
one set of these quantum numbers.

PROBLEMS

21

2.2

2.3

(a) Sketch a simple vacuum tube device and the associated circuitry for mea-
suring E,, in the photoelectric effect experiment. The electrodes can be
placed in a sealed glass envelope.

(b) Sketch the photocurrent 7 vs. retarding voltage V that you would expect
to measure for a given electrode material and configuration. Make the
sketch for several intensities of light at a given wavelength.

(c) The work function of platinum is 4.09 eV. What retarding potential will
be required to reduce the photocurrent to zero in a photoelectric experi-
ment with Pt electrodes if the wavelength of incident light is 2440 A?
Remember that an energy of g® is lost by each electron in escaping the
surface.

In a photoelectric effect experiment, the threshold wavelength for the ejection
of photoelectrons from zinc is 310 nm. Calculate the work function for Zinc.
Also, calculate the velocity for the photoelectrons by light of wavelength 2000
A other than threshold.

(a) Show that the various lines in the hydrogen spectrum can be expressed in
angstroms as
.. 911nin’

AMA)
A=

where n; = 1 for the Lyman series, 2 for the Balmer series, and 3 for the
Paschen series. The integer n is larger than n;.
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2.8
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(b) Calculate A for the Lyman series to n = 5, the Balmer series ton = 7,
and the Paschen series ton = 10. Plot the results as in Fig. 2-2. What are
the wavelength limits for each of the three series?

Using Heisenberg’s uncertainty principle, estimate the momentum uncer-
tainty of a bound electron within an atom of diameter 10 fm. Use this calcu-
lated momentum uncertainty to find the minimum binding energy.

From Balmer’s series calculation, first line in the H spectrum exhibits wave-
length of 656.1 nm. Bohr’s theory supports almost similar kind of radiative
transition by transition of electron of H atom from third to second energy level.
From this, find the value of the Rydberg constant.

Consider an electron with a normalized wave function defined as
@(x) = 2aVaxe *forx > 0 = 0 forx < 0.

(a) For what value of x does P(x) = |¢(x)|? is at peak?
(b) Calculate <x> and <x*>.

(c) What is the probability of finding the particle between x = 0 and
x=1/a?

A particle is described in 1-D by a wavefunction:

Y = Be®forx = 0and Ce™ forx < 0, and B and C are real con-
stants. Calculate B and C to make ¢ a valid wavefunction. Where is the particle
most likely to be?

The electron wavefunction is Ce*** between x = 2 and 22 cm, and zero every-
where else. What is the value of C? What is the probability of finding the elec-
tron betweenx = 0 and 4 cm?

We define a potential well having energies V as a function of position x, as
follows:

V= o for x=-05nmto0; V=0eVforx =0to5nm; V= 10 eV
for x =5 to 6 nm, and V = 0forx > 6 nm and x < —0.5 nm. We put an
electron with energy 7 eV in the region x, between 0 and 5 nm. What is
the probability of finding the electron at x < 0 nm? Is the probability of
finding the electron at x > 6 nm zero or nonzero? What is this probability
for x > 6 nm if the electron was described by classical mechanics and not
quantum mechanics?

Discuss the number of electrons, protons, and neutrons present in the carbon
(C) atom by analyzing its electronic shell structure.

Calculate the first 5 energy levels for an electron trapped in an infinite quan-
tum well (QW) of width 0.59 nm.

An electron within an atom is described by the following wave function:
—iEy —iExt

o(xt) = i(x) + eigoz(x). Calculate the expectation value of the
energy and the energy separation AE.
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2.13 Schematically show the number of electrons in the various subshells of an
atom with the electronic shell structure 1s°2s*2p* and an atomic weight of 21.
Indicate how many protons and neutrons there are in the nucleus. Is this atom
chemically reactive, and why?
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SELF QUIZ

Question 1

Decide whether each of the following one-dimensional functions defined between
the limits x approaches negative infinity and x approaches positive infinity is an al-
lowed quantum mechanical wavefunction (circle one answer in each case):
1. W(x) = Cfor —|a| < x < |a]; ¥(x) = 0 otherwise allowed / not allowed
2. W(x) = C(e’ + &™) allowed / not allowed
3. W(x) = C exp(—x*/a) allowed / not allowed
where both C and a are nonzero and finite constants.

Question 2

Consider the finite potential well sketched below.

E [ E=1leV

> E=0eV

1. Can the measured value of a particle’s energy in the well be 0 eV?

2. If the particle has an energy of E < 1eV, can the measured value of the
particle’s position be |x| > a?
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Question 3

(a) For a particle in the following potential well of minimum potential energy equal
to 0 eV, could the ground state eigenenergy E; of the particle be equal to zero?
Circle one choice below.

yes [ no | not enough information provided

energy £
A
potential V(x)

energy = 0eV > X

(b) Given the 3rd and 4th most energetic eigenstates of energies as shown above, is
it possible under any circumstances that the expectation value of the particle’s
energy could be exactly 0.5(F + E,) ? (Do not assume the particle is in an
energy eigenstate.) Circle one choice below.

yes | no [ not enough information provided

(c) Consider the following continuous, smooth, and normalizable wavefunction
W(x).Is this wavefunction an allowed quantum mechanical wavefunction for a
particle (currently) above the potential V(x) of part (a)? (Circle one.)

yes | no [ can't tell

U(x)

SEAV.UYAN——

Question 4

U=

Consider quantum mechanical particles incident from the left having well-defined
energy as indicated by the vertical positions of the arrows, in the two systems shown



82

Chapter 2

below. Will the probability of being reflected be greater for the incident particle in
System 1 than for the incident particle in System 2? Circle one choice below.

yes [ no | not enough information provided

potential V(x) potential V(x)
E
e e
X
System 1 System 2
(narrow high potential barrier) (wide low potential barrier)
Question 5

Suppose five precise measurements were made on a particle in rapid succession,
such that the time evolution of the particle wavefunction between measurements
could be neglected, in the following order: (1) position, (2) momentum, (3) momen-
tum, (4) position, and (5) momentum. If the results of the first two measurements
were x, and p,, respectively, what would be the results of the next three measure-
ments (circle one each)?

measurement (3): momentum p,/ unknown

measurement (4): position x,/ unknown

measurement (5): momentum p,/ unknown

Question 6

If the photoelectric effect were governed by classical physics rather than quantum
mechanics, what would be result of the following experiments:

(a) By changing the intensity of the incident radiation, what would happen to the
energy and number of ejected electrons?

(b) How about changing the frequency of the light?
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Energy Bands and Charge
Carriers in Semiconductors

OBJECTIVES

1. Understand conduction and valence energy bands, and how band
gaps are formed

2. Appreciate the idea of doping in semiconductors

3. Use the density of states and Fermi Dirac statistics to calculate carrier
concentrations

4. Calculate drift currents in an electric field in terms of carrier mobility,
and how mobility is affected by scattering

5. Discuss the idea of “effective” masses

In this chapter we begin to discuss the specific mechanisms by which cur-
rent flows in a solid. In examining these mechanisms we shall learn why
some materials are good conductors of electric current, whereas others are
poor conductors. We shall see how the conductivity of a semiconductor can
be varied by changing the temperature or the number of impurities. These
fundamental concepts of charge transport form the basis for later discussions
of solid state device behavior.

In Chapter 2 we found that electrons are restricted to sets of discrete energy
levels within atoms. Large gaps exist in the energy scale in which no energy
states are available. In a similar fashion, electrons in solids are restricted to
certain energies and are not allowed at other energies. The basic difference
between the case of an electron in a solid and that of an electron in an isolated
atom is that in the solid the electron has a range, or band, of available energies.
The discrete energy levels of the isolated atom spread into bands of energies
in the solid because in the solid the wavefunctions of electrons in neighboring
atoms overlap, and an electron is not necessarily localized at a particular atom.
Thus, for example, an electron in the outer orbit of one atom feels the influence
of neighboring atoms, and its overall wavefunction is altered. Naturally, this
influence affects the potential energy term and the boundary conditions in the

3.1
BONDING
FORCES AND

ENERGY BANDS

IN SOLIDS
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Figure 3-1
Different types of
chemical bonding
in solids: (a) an
example of ionic
bonding in NaCl;
(b) covalent
bonding in the Si
crystal, viewed
along a <100>
direction (see also
Figs. 1-8

and 1-9).

Schrodinger equation, and we would expect to obtain different energies in the
solution. Usually, the influence of neighboring atoms on the energy levels of
a particular atom can be treated as a small perturbation, giving rise to shifting
and splitting of energy states into energy bands.

3.1.1 Bonding Forces in Solids

The interaction of electrons in neighboring atoms of a solid serves the
very important function of holding the crystal together. For example,
alkali halides such as NaCl are typified by ionic bonding. In the NaCl

Na*t

(@)

0 @ O
Two electrons per bond

(®)
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lattice, each Na atom is surrounded by six nearest neighbor Cl atoms, and
vice versa. Four of the nearest neighbors are evident in the two-dimen-
sional representation shown in Fig. 3-1a. The electronic structure of Na
(Z = 11) is [Ne] 3s', and Cl (Z = 17) has the structure [Ne] 35?°3p°. In the
lattice each Na atom gives up its outer 3s electron to a Cl atom, so that the
crystal is made up of ions with the electronic structures of the inert atoms
Ne and Ar (Ar has the electronic structure [Ne] 3s>3p®). However, the ions
have net electric charges after the electron exchange. The Na™ ion has a net
positive charge, having lost an electron, and the Cl™ ion has a net negative
charge, having gained an electron.

Each Na* ion exerts an electrostatic attractive force upon its six Cl~
neighbors, and vice versa. These coulombic forces pull the lattice together
until a balance is reached with repulsive forces. A reasonably accurate cal-
culation of the atomic spacing can be made by considering the ions as hard
spheres being attracted together (Example 1-1).

An important observation in the NaCl structure is that all electrons
are tightly bound to atoms. Once the electron exchanges have been made
between the Na and Cl atoms to form the Na* and Cl™ ions, the outer orbits
of all atoms are completely filled. Since the ions have the closed-shell config-
urations of the inert atoms Ne and Ar, there are no loosely bound electrons
to participate in current flow; as a result, NaCl is a good insulator.

In a metal atom the outer electronic shell is only partially filled, usu-
ally by no more than three electrons. We have already noted that the alkali
metals (e.g., Na) have only one electron in the outer orbit. This electron is
loosely bound and is given up easily in ion formation. This accounts for the
great chemical activity in the alkali metals, as well as for their high electri-
cal conductivity. In the metal the outer electron of each alkali atom is con-
tributed to the crystal as a whole, so that the solid is made up of ions with
closed shells immersed in a sea of free electrons. The forces holding the lat-
tice together arise from an interaction between the positive ion cores and the
surrounding free electrons. This is one type of metallic bonding. Obviously,
there are complicated differences in the bonding forces for various met-
als, as evidenced by the wide range of melting temperatures (234 K for Hg,
3643 K for W). However, the metals have the sea of electrons in common,
and these electrons are free to move about the crystal under the influence
of an electric field.

A third type of bonding is exhibited by the diamond lattice semi-
conductors. We recall that each atom in the Ge, Si, or C diamond lattice
is surrounded by four nearest neighbors, each with four electrons in the
outer orbit. In these crystals each atom shares its valence electrons with
its four neighbors (Fig. 3-1b). Bonding between nearest neighbor atoms is
illustrated in the diamond lattice diagram of Fig. 1-9. The bonding forces
arise from a quantum mechanical interaction between the shared electrons.
This is known as covalent bonding; each electron pair constitutes a covalent
bond. In the sharing process it is no longer relevant to ask which electron
belongs to a particular atom—both belong to the bond. The two electrons

85



86

Chapter 3

are indistinguishable, except that they must have opposite spin to satisfy
the Pauli exclusion principle. Covalent bonding is also found in certain mol-
ecules, such as H,.

As in the case of the ionic crystals, no free electrons are available to
the lattice in the covalent diamond structure of Fig. 3-1b. By this reasoning
Ge and Si should also be insulators. However, we have pictured an idealized
lattice at 0 K in this figure. As we shall see in subsequent sections, an electron
can be thermally or optically excited out of a covalent bond and thereby
become free to participate in conduction. This is an important feature of
semiconductors.

Compound semiconductors such as GaAs have mixed bonding, in
which both ionic and covalent bonding forces participate. Some ionic bond-
ing is to be expected in a crystal such as GaAs because of the difference in
placement of the Ga and As atoms in the periodic table. The ionic charac-
ter of the bonding becomes more important as the atoms of the compound
become further separated in the periodic table, as in the II-VI compounds.
Such electronic structure, and specifically the idea that the outermost valence
shell is complete if it has a stable set of eight electrons (Ne, Ar, Kr), is the
basis of most of chemistry and many of the semiconducting properties.

3.1.2 Energy Bands

As isolated atoms are brought together to form a solid, various interactions
occur between neighboring atoms, including those described in the preced-
ing section. The forces of attraction and repulsion between atoms will find
a balance at the proper interatomic spacing for the crystal. In the process,
important changes occur in the electron energy level configurations, and
these changes result in the varied electrical properties of solids.

In Fig. 2-8, we showed the orbital model of a Si atom, along with the
energy levels of the various electrons in the coulombic potential well of the
nucleus. Let us focus on the outermost shell or valence shell, n = 3, where
two 3s and two 3p electrons interact to form the four “hybridized” sp? elec-
trons when the atoms are brought close together. In Fig. 3-2, we schemati-
cally show the coulombic potential wells of two atoms close to each other,
along with the wavefunctions of two electrons centered on the two nuclei. By
solving the Schrodinger equation for such an interacting system, we find that
the composite two-electron wavefunctions are linear combinations of the
individual atomic orbitals (LCAQO). The odd or antisymmetric combination
is called the antibonding orbital, while the even or symmetric combination is
the bonding orbital. It can be seen that the bonding orbital has a higher value
of the wavefunction (and therefore the electron probability density) than the
antibonding state in the region between the two nuclei. This corresponds to
the covalent bond between the atoms.

Fundamental particles in nature have either integer spin and are called
bosons (e.g., photons), or half-integer spin and are known as fermions (e.g.,
electrons). The quantum mechanical wavefunction of the electron has a
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Linear combinations of atomic orbitals (LCAO): The LCAO when two atoms are brought together leads

to two distinct “normal” modes—a higher energy antibonding orbital, and a lower energy bonding
orbital. Note that the electron probability density is high in the region between the ion cores (covalent
“bond”), leading to lowering of the bonding energy level and the cohesion of the crystal. If instead of

two atoms, one brings together N atoms, there will be N distinct LCAO, and N closely spaced energy

levels in a band.

spatial (or orbital) part and a spin-dependent part. It can be shown that fer-
mion wavefunctions of a multi-electron system must be antisymmetric. When
the spatial part is symmetric, the electron spins must be anti-parallel, and vice
versa. Hence, the two electrons in the bonding orbital have opposite spins,
while those in the anti-bonding state have parallel spins. This “explains” the
Pauli exclusion principle. When we try to put two electrons into a quan-
tum state, they must have opposite spins. Parallel spin electrons quantum
mechanically repel each other, as seen for the antisymmetric orbital. (This
should not be confused with Coulomb repulsion of the electrons.) Later on
in Chapter 10, we will see that these concepts have important ramifications
for nanoelectronics. To determine the energy levels of the bonding and the
antibonding states, it is important to recognize that in the region between
the two nuclei the Coulombic potential energy V(r) is lowered (solid line in
Fig.3-2) compared to isolated atoms (dashed lines). It is easy to see why the
potential energy would be lowered in this region, because an electron here
would be attracted by two nuclei, rather than just one. For the bonding state
the electron probability density is higher in this region of lowered potential
energy than for the antibonding state. As a result, the original isolated atomic
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energy level would be split into two, a lower bonding energy level and a
higher antibonding level. It is the lowering of the energy of the bonding
state that gives rise to cohesion of the crystal. For even smaller interatomic
spacings, the energy of the crystal goes up because of repulsion between the
nuclei, and other electronic interactions. Since the probability density is given
by the square of the wavefunction, if the entire wavefunction is multiplied
by —1, it does not lead to a different LCAO. The important point to note
in this discussion is that the number of distinct LCAO, and the number of
distinct energy levels, depends on the number of atoms that are brought
together. The lowest energy level corresponds to the totally symmetric
LCAQ, the highest corresponds to the totally antisymmetric case, and the
other combinations lead to energy levels in between.

Qualitatively, we can see that as atoms are brought together, the appli-
cation of the Pauli exclusion principle becomes important. When two atoms
are completely isolated from each other so that there is no interaction of
electron wavefunctions between them, they can have identical electronic
structures. As the spacing between the two atoms becomes smaller, however,
electron wavefunctions begin to overlap. The exclusion principle dictates
that no two electrons in a given interacting system may have the same quan-
tum state; thus there must be at most one electron per level after there is a
splitting of the discrete energy levels of the isolated atoms into new levels
belonging to the pair rather than to individual atoms.

In a solid, many atoms are brought together, so that the split energy
levels form essentially continuous bands of energies. As an example,
Fig. 3-3 illustrates the imaginary formation of a silicon crystal from isolated
silicon atoms. Each isolated silicon atom has an electronic structure 1s°2s”
2p®35s?3p? in the ground state. Each atom has available two 1s states, two 2s
states, six 2p states, two 3s states, six 3p states, and higher states (see Tables
2-1 and 2-2). If we consider N atoms, there will be 2N, 2N, 6N, 2N, and 6N
states of type 1s, 2s, 2p, 3s, and 3p, respectively. As the interatomic spac-
ing decreases, these energy levels split into bands, beginning with the outer
(n = 3) shell. As the “3s” and “3p” bands grow, they merge into a single band
composed of a mixture of energy levels. This band of “3s-3p” levels contains
8N available states. As the distance between atoms approaches the equilib-
rium interatomic spacing of silicon, this band splits into two bands separated
by an energy gap E,. The upper band (called the conduction band) contains
4N states, as does the lower (valence) band. Thus, apart from the low-lying
and tightly bound “core” levels, the silicon crystal has two bands of available
energy levels separated by an energy gap E, wide, which contains no allowed
energy levels for electrons to occupy. This gap is sometimes called a “forbid-
den band,” since in a perfect crystal it contains no electron energy states.

We should pause at this point and count electrons. The lower “1s” band
is filled with the 2N electrons which originally resided in the collective 1s
states of the isolated atoms. Similarly, the 2s band and the 2p bands will have
2N and 6N electrons in them, respectively. However, there were 4N electrons
in the original isolated n = 3 shells (2N in 3s states and 2N in 3p states).



Energy Bands and Charge Carriers in Semiconductors

Relative spacing of atoms ————

[ s m[/]n

+2
4+

+ oI+

4N States -
0 Electrons 6N States

2N Electrons

4

(

2

I

1+

()
)
)
()
()

1
1
2

6N States fi(") H}
(] o%1 L3

SN Electrons li(f) B >~ | Outer shell

G e —— — —

2N States .

|
| e
: 2N Electrons

\
e — ——— —

Relative energy of electrons ————»

4N States
4N Electrons
(,(‘, 1011%I 2N States
| 2N Electrons
— o0
5 2 8N States
g ij 4N Electrons %

—

I+ 1+ 1+ I+

o |+1

@ ol1 L2

) Middle shell
(3

0[ 0
+(1) 0‘ 0 ‘ 1 | Inner shell

Figure 3-3

Energy levels in Si as a function of interatomic spacing. The core levels (n = 1, 2) in Si are completely
filled with electrons. At the actual atomic spacing of the crystal, the 2N electrons in the 3s subshell and
the 2N electrons in the 3p subshell undergo sp® hybridization, and all end up in the lower 4N states
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(valence band), while the higher-lying 4N states (conduction band) are empty, separated by a band gap.

These 4N electrons must occupy states in the valence band or the conduction
band in the crystal. At 0 K the electrons will occupy the lowest energy states
available to them. In the case of the Si crystal, there are exactly 4N states
in the valence band available to the 4N electrons. Thus at 0 K, every state in
the valence band will be filled, while the conduction band will be completely
empty of electrons. As we shall see, this arrangement of completely filled and
empty energy bands has an important effect on the electrical conductivity
of the solid.

3.1.3 Metals, Semiconductors, and Insulators

Every solid has its own characteristic energy band structure. This variation
in band structure is responsible for the wide range of electrical character-
istics observed in various materials. The silicon band structure of Fig. 3-3,
for example, can give a good picture of why silicon in the diamond lattice is
a good insulator. To reach such a conclusion, we must consider the proper-
ties of completely filled and completely empty energy bands in the current
conduction process.
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Before discussing the mechanisms of current flow in solids further, we
can observe here that for electrons to experience acceleration in an applied
electric field, they must be able to move into new energy states. This implies
there must be empty states (allowed energy states which are not already
occupied by electrons) available to the electrons. For example, if relatively
few electrons reside in an otherwise empty band, ample unoccupied states
are available into which the electrons can move. On the other hand, the
silicon band structure is such that the valence band is completely filled with
electrons at 0 K and the conduction band is empty. There can be no charge
transport within the valence band, since no empty states are available into
which electrons can move. There are no electrons in the conduction band,
so no charge transport can take place there either. Thus silicon at 0 K has a
high resistivity typical of insulators.

Semiconductor materials at 0 K have basically the same structure as
insulators—a filled valence band separated from an empty conduction band
by a band gap containing no allowed energy states (Fig. 3-4). The difference
lies in the size of the band gap E,, which is much smaller in semiconductors
than in insulators. For example, the semiconductor Si has a band gap of about
1.1 eV compared with 5 eV for diamond. The relatively small band gaps of
semiconductors (Appendix III) allow for excitation of electrons from the
lower (valence) band to the upper (conduction) band by reasonable amounts
of thermal or optical energy. For example, at room temperature a semicon-
ductor with a 1-eV band gap will have a significant number of electrons
excited thermally across the energy gap into the conduction band, whereas
an insulator with E, = 10 eV will have a negligible number of such excita-
tions. Thus an important difference between semiconductors and insulators
is that the number of electrons available for conduction can be increased
greatly in semiconductors by thermal or optical energy.

In metals the bands either overlap or are only partially filled. Thus
electrons and empty energy states are intermixed within the bands so
that electrons can move freely under the influence of an electric field. As
expected from the metallic band structures of Fig. 3—4, metals have a high
electrical conductivity.

3.1.4 Direct and Indirect Semiconductors

The “thought experiment” of Section 3.1.2, in which isolated atoms were
brought together to form a solid, is useful in pointing out the existence of
energy bands and some of their properties. Other techniques are generally
used, however, when quantitative calculations are made of band structures.
In a typical calculation, a single electron is assumed to travel through a per-
fectly periodic lattice. The wavefunction of the electron is assumed to be
in the form of a plane wave' moving, for example, in the x-direction with

'Discussions of plane waves are available in most sophomore physics texts or in introductory
electromagnetics texts.
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propagation constant k, also called a wavevector. The space-dependent wave-
function for the electron is

() = Uk, x)e’t (3-1)

where the function U(k,, x) modulates the wavefunction according to the
periodicity of the lattice. Such wavefunctions are called Bloch functions after
the physicist Felix Bloch.

In such a calculation, allowed values of energy can be plotted vs. the
propagation constant k. Since the periodicity of most lattices is different in
various directions, the (E, k) diagram must be plotted for the various crystal
directions, and the full relationship between E and k is a complex surface
which should be visualized in three dimensions.

The band structure of GaAs has a minimum in the conduction band
and a maximum in the valence band for the same k value (k = 0). On the
other hand, Si has its valence band maximum at a different value of k than
its conduction band minimum. Thus an electron making a smallest-energy
transition from the conduction band to the valence band in GaAs can do so
without a change in k value; on the other hand, a transition from the mini-
mum point in the Si conduction band to the maximum point of the valence
band requires some change in k. Thus there are two classes of semiconduc-
tor energy bands: direct and indirect (Fig. 3-5). We can show that an indirect
transition, involving a change in k, requires a change of momentum for the
electron.

The direct and indirect semiconductors are identified in Appendix I1I.
In a direct semiconductor such as GaAs, an electron in the conduction band
can fall to an empty state in the valence band, giving off the energy differ-
ence E, as a photon of light. On the other hand, an electron in the conduction
band minimum of an indirect semiconductor such as Si cannot fall directly to
the valence band maximum but must undergo a momentum change as well

91

Figure 3-4
Typical band
structures at O K.
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Figure 3-5
Direct and
indirect electron
transitions in
semiconductors:
(a) direct
transition with
accompanying
photon emission;
(b) indirect
transition via a
defect level.

A~~~ Ty = Eg Ef_

(a) Direct (b) Indirect

as changing its energy. For example, it may go through some defect state (E,)
within the band gap. We shall discuss such defect states in Sections 4.2.1 and
4.3.2.In an indirect transition which involves a change in k, part of the energy
is generally given up as heat to the lattice rather than as an emitted photon.
This difference between direct and indirect band structures is very important
for deciding which semiconductors can be used in devices requiring light
output. For example, semiconductor light emitters and lasers (Chapter 8)
generally must be made of materials capable of direct band-to-band transi-
tions or of indirect materials with vertical transitions between defect states.

Band diagrams such as those shown in Fig. 3-5 are cumbersome to
draw in analyzing devices, and do not provide a view of the variation of elec-
tron energy with distance in the sample. Therefore, in most discussions we
shall use simple band pictures such as those shown in Fig. 3-4, remembering
that electron transitions across the band gap may be direct or indirect.

3.1.5 Variation of Energy Bands with Alloy Composition

As III-V ternary and quaternary alloys are varied over their composition
ranges (see Sections 1.2.4 and 1.4.1), their band structures change. For example,
Fig. 3-6 illustrates the band structure of GaAs and AlAs, and the way in which
the bands change with composition x in the ternary compound Al Ga,_ As.
The binary compound GaAs is a direct material, with a band gap of 1.43 eV at
room temperature. For reference, we call the direct (k = 0) conduction band
minimum I'. There are also two higher-lying indirect minima in the GaAs con-
duction band, but these are sufficiently far above I' that few electrons reside
there (we discuss an important exception in Chapter 10 in which high-field
excitation of electrons into the indirect minima leads to the Gunn effect).
We call the lowest-lying GaAs indirect minimum L and the other X. In AlAs
the direct I' minimum is much higher than the indirect X minimum, and this
material is therefore indirect with a band gap of 2.16 eV at room temperature.
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Variation of direct and indirect conduction bands in AlGaAs as a function of composition: (a) the (E, k)
diagram for GaAs, showing three minima in the conduction band; (b) AlAs band diagram; (c) positions
of the three conduction band minima in Al,.Ga,_As as x varies over the range of compositions from

GaAs (x = 0) to AlAs (x = 1). The smallest band gap, E; (shown in color), follows the direct T' band to
x = 0.38, and then follows the indirect X band.
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In the ternary alloy Al,Ga,_,As all of these conduction band minima
move up relative to the valence band as the composition x varies from 0
(GaAs) to 1 (AlAs). However, the indirect minimum X moves up less than
the others, and for compositions above about 38 percent Al this indirect mini-
mum becomes the lowest-lying conduction band. Therefore, the ternary alloy
AlGaAs is a direct semiconductor for Al compositions on the column III
sublattice up to about 38 percent, and is an indirect semiconductor for higher
Al mole fractions. The band gap energy E, is shown in color on Fig. 3—6c.

The variation of energy bands for the ternary alloy GaAs;_.P, is gener-
ally similar to that of AlGaAs shown in Fig. 3-6. GaAsP is a direct semicon-
ductor from GaAs to about GaAssP,s and is indirect from this composition
to GaP (see Fig. 8-11). This material is often used in visible LEDs.

Since light emission is most efficient for direct materials, in which
electrons can drop from the conduction band to the valence band without
changing k (and therefore momentum), LEDs in GaAsP are generally made
in materials grown with a composition less than x = 0.45. For example,
most red LEDs in this material are made at about x = 0.4, where the
I' minimum is still the lowest-lying conduction band edge, and where the
photon resulting from a direct transition from this band to the valence band
is in the red portion of the spectrum (about 1.9 eV). The use of impurities
to enhance radiative recombination in indirect material will be discussed
in Section 8.2.

3.2

CHARGE
CARRIERS

IN SEMI-
CONDUCTORS

The mechanism of current conduction is relatively easy to visualize in the
case of a metal; the metal atoms are imbedded in a “sea” of relatively free
electrons, and these electrons can move as a group under the influence of an
electric field. This free electron view is oversimplified, but many important
conduction properties of metals can be derived from just such a model.
However, we cannot account for all of the electrical properties of semi-
conductors in this way. Since the semiconductor has a filled valence band
and an empty conduction band at 0 K, we must consider the increase in
conduction band electrons by thermal excitations across the band gap as
the temperature is raised. In addition, after electrons are excited to the
conduction band, the empty states left in the valence band can contribute
to the conduction process. The introduction of impurities has an important
effect on the energy band structure and on the availability of charge carriers.
Thus there is considerable flexibility in controlling the electrical properties
of semiconductors.

3.2.1 Electrons and Holes

As the temperature of a semiconductor is raised from 0 K, some electrons
in the valence band receive enough thermal energy to be excited across the
band gap to the conduction band. The result is a material with some elec-
trons in an otherwise empty conduction band and some unoccupied states in
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an otherwise filled valence band (Fig. 3-7).2 For convenience, an empty state
in the valence band is referred to as a hole. If the conduction band electron
and the hole are created by the excitation of a valence band electron to the
conduction band, they are called an electron—hole pair (abbreviated EHP).

After excitation to the conduction band, an electron is surrounded by
a large number of unoccupied energy states. For example, the equilibrium
number of EHPs in pure Si at room temperature is only about 10'° EHP/cm?,
compared to the Si atom density of 5 X 102?? atoms/cm®. Thus the few elec-
trons in the conduction band are free to move about via the many available
empty states.

The corresponding problem of charge transport in the valence band is
somewhat more complicated. However, it is possible to show that the effects
of current in a valence band containing holes can be accounted for by simply
keeping track of the holes themselves.

In a filled band, all available energy states are occupied. For every
electron moving with a given velocity, there is an equal and opposite electron
motion elsewhere in the band. If we apply an electric field, the net current
is zero because for every electron j moving with velocity v; there is a cor-
responding electron ;' with velocity —v; . Figure 3-8 illustrates this effect in

=~V

2In Fig. 3-7 and in subsequent discussions, we refer to the bottom of the conduction band as E, and the
top of the valence band as E,.
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Figure 3-7
Electron-hole
pairs in a
semiconductor.

Figure 3-8

A valence band
with all states
filled, including
states j and

j’, marked for
discussion. The
jth electron with
wavevector k;
is matched by
an electron at |
with the opposite
wavevector —k;.
There is no net
current in the
band unless

an electron is
removed. For
example, if the
jth electron is
removed, the
motion of the
electron at |

is no longer
compensated.
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terms of the electron energy vs. wavevector plot for the valence band. Since
k is proportional to electron momentum, it is clear the two electrons have
oppositely directed velocities. With N electrons/cm?® in the band we express
the current density using a sum over all of the electron velocities, and includ-
ing the charge —g on each electron. In a unit volume,

J = (—q)%vi =0 (filled band) (3-2a)

Now if we create a hole by removing the jth electron, the net current
density in the valence band involves the sum over all velocities, minus the
contribution of the electron we have removed:

N
J=(=q) DV — (—q)v, (jth electron missing) 3-2b)

But the first term is zero, from Eq. (3-2a). Thus the net current is +gv;.
In other words, the current contribution of the hole is equivalent to that of
a positively charged particle with velocity v, that of the missing electron.
Of course, the charge transport is actually due to the motion of the new
uncompensated electron (j'). Its current contribution (—-¢) (-v;) is equivalent
to that of a positively charged particle with velocity +v;. For simplicity, it is
customary to treat empty states in the valence band as charge carriers with
positive charge and positive mass.

A simple analogy may help in understanding the behavior of holes. If
we have two bottles, one completely filled with water and one completely
empty, we can ask ourselves “Will there be any net transport of water when
we tilt the bottles?” The answer is “no.” In the case of the empty bottle, the
answer is obvious. In the case of the completely full bottle also, there can-
not be any net motion of water because there is no empty space for water
to move into. Similarly, an empty conduction band completely devoid of
electrons or a valence band completely full of electrons cannot give rise to a
net motion of electrons, and thus to current conduction.

Next, we imagine transferring some water droplets from the full bottle
into the empty bottle, leaving behind some air bubbles, and ask ourselves
the same question. Now when we tilt the bottles there will be net transport
of water: the water droplets will roll downhill in one bottle and the air bub-
bles will move uphill in the other. Similarly, a few electrons in an otherwise
empty conduction band move opposite to an electric field, while holes in an
otherwise filled valence band move in the direction of the field. The bubble
analogy is imperfect, but it may provide a physical feel for why the charge
and mass of a hole have opposite signs from those of an electron.

In all the following discussions we shall concentrate on the electrons in
the conduction band and on the holes in the valence band. We can account
for the current flow in a semiconductor by the motion of these two types
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of charge carriers. We draw valence and conduction bands on an electron
energy scale E, as in Fig. 3-8. However, we should remember that in the
valence band, hole energy increases oppositely to electron energy, because
the two carriers have opposite charge. Thus hole energy increases down-
ward in Fig. 3-8 and holes, seeking the lowest energy state available, are
generally found at the fop of the valence band. In contrast, conduction band
electrons are found at the bottom of the conduction band.

It would be instructive to compare the (E, k) band diagrams with
the “simplified” band diagrams that are used for routine device analysis
(Fig. 3-9). As discussed in Examples 3-1 and 3-2, an (E, k) diagram is a
plot of the total electron energy (potential plus kinetic) as a function of the
crystal-direction—dependent electron wavevector (which is proportional to
the momentum and therefore the velocity) at some point in space. Hence,
the bottom of the conduction band corresponds to zero electron velocity
or kinetic energy, and simply gives us the potential energy at that point in
space. For holes, the top of the valence band corresponds to zero kinetic
energy. For simplified band diagrams, we plot the edges of the conduction
and valence bands (i.e., the potential energy) as a function of position in the
device. Energies higher in the band correspond to additional kinetic energy
of the electron. Also, the fact that the band edge corresponds to the electron
potential energy tells us that the variation of the band edge in space is related
to the electric field at different points in the semiconductor. We will show
this relationship explicitly in Section 4.4.2.

Electron
energy

Electron
K.E.

Hole
energy
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Figure 3-9
Superimposition
of the (E, k) band
structure on the
E-versus-position
simplified band
diagram for a
semiconductor

in an electric
field. Electron
energies increase
going up, while
hole energies
increase going
down. Similarly,
electron and
hole wavevectors
point in opposite
directions and
these charge
carriers move
opposite to each
other, as shown.
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EXAMPLE 3-1

In Fig. 3-9, an electron at location A sees an electric field given by
the slope of the band edge (potential energy), and gains kinetic energy (at
the expense of potential energy) by moving to point B. Correspondingly,
in the (E, k) diagram, the electron starts at k = 0, but moves to a nonzero
wavevector kg. The electron then loses kinetic energy to heat by scattering
mechanisms (discussed in Section 3.4.3) and returns to the bottom of the
band at B. The slopes of the (E, x) band edges at different points in space
reflect the local electric fields at those points. Hence, if the electric field
between A and B were not constant, as shown in Fig. 3-9, the slope of the
band edge would also not be constant but vary at each point reflecting the
magnitude and direction of the local electric field. In practice, the electron
may lose its kinetic energy in stages by a series of scattering events, as shown
by the colored dashed lines.

In a long semiconductor bar (E; = 2 eV), conduction band electrons
come in from the left in the positive x-direction with a kinetic energy
of 3 eV. They move from location A to B to C to D. Between A and B,
the electric field is zero; between locations B and C, there is a linearly
varying voltage increase of 4 V; between C and D, the field is again zero.
Assuming no scattering, sketch a simplified band diagram describing the
motion of these electrons. Assuming that these electrons can be described
as plane waves, with a free-electron mass, write down the wavefunction
of the electrons at D. Leave your result in terms of an arbitrary normal-
ization constant. Draw a band diagram and give the wavefunction at D in
terms of the normalization constant.

SOLUTION

A B C D
General wavefunction: W(x, 1) = a X e @)
hZ . k2

EnergyatDZﬁ-wZ2 = 3eV + 4eV = 7eV

mO
=7eV-1.6-10"" 2% = 1.12-107%J

1.12-107%] 1.12-1078J
w = =
h 1.06-10*J +s

=1.06-10"Hz
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e \/1.12-1018J-2-m0 _ \/1.12-10181-2-9.11-1031kg
> (1.06-107 - 5)?

=1.35-10"4%
Wavefunction at D:

; +1010L. -10'5H7+ ° . .
W(x,t) = a-e(13510 106107020 where o is the normalization constant

3.2.2 Effective Mass

The electrons in a crystal are not completely free, but instead interact with
the periodic potential of the lattice. As a result, their “wave—particle” motion
cannot be expected to be the same as for electrons in free space. Thus, in
applying the usual equations of electrodynamics to charge carriers in a solid,
we must use altered values of particle mass. In doing so, we account for most
of the influences of the lattice, so that the electrons and holes can be treated as
“almost free” carriers in most computations. The calculation of effective mass
must take into account the shape of the energy bands in three-dimensional
k-space, taking appropriate averages over the various energy bands.

Find the (E, k) relationship for a free electron and relate it to the electron mass.
I8

A

AN

EXAMPLE 3-2
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From Example 2-2, the electron momentum is p = mv = fik. Then

Thus the electron energy is parabolic with wavevector k. The electron
mass is inversely related to the curvature (second derivative) of the (E, k)
relationship, since

¢E_®
dk* m

Although electrons in solids are not free, most energy bands are close
to parabolic at their minima (for conduction bands) or maxima (for
valence bands). We can also approximate effective mass near those band
extrema from the curvature of the band.

SOLUTION



100

Chapter 3

The effective mass of an electron in a band with a given (E, k) relation-
ship is found in Example 3-2 to be

ﬁZ
 d*Eldk?

k

(3-3)

Thus the curvature of the band determines the electron effective mass.
For example, in Fig. 3—6a it is clear that the electron effective mass in GaAs
is much smaller in the direct I conduction band (strong curvature) than in
the L or X minima (weaker curvature, smaller value in the denominator of
the m* expression).

A particularly interesting feature of Figs. 3-5 and 3-6 is that the curva-
ture of d°E/dk® is positive at the conduction band minima, but is negative
at the valence band maxima. Thus, the electrons near the top of the valence
band have negative effective mass, according to Eq. (3-3). Valence band elec-
trons with negative charge and negative mass move in an electric field in the
same direction as holes with positive charge and positive mass. As discussed
in Section 3.2.1, we can fully account for charge transport in the valence band
by considering hole motion.

For a band centered at k = 0 (such as the I" band in GaAs), the (E, k)
relationship near the minimum is usually parabolic:

ﬁz

E:
2m

I + E, (3-4)

Comparing this relation to Eq. (3-3) indicates that the effective mass
m* is constant in a parabolic band. On the other hand, many conduction
bands have complex (E, k) relationships that depend on the direction of
electron transport with respect to the principal crystal directions. In this case,
the effective mass is a tensor quantity. However, we can use appropriate
averages over such bands in most calculations.

Figure 3-10a shows the band structures for Si and GaAs viewed along
two major directions. While the shape is parabolic near the band edges (as indi-
cated in Figure 3-5 and Example 3-2), there are significant non-parabolicities
at higher energies. The energies are plotted along the high symmetry [111]
and [100] directions in the crystal. The k = 0 point is denoted as I". When we
go along the [100] direction, we reach a valley near X, while we reach the L
valley along the [111] direction. (Since the energies are plotted along different
directions, the curves do not look symmetric.) The valence band maximum in
most semiconductors is at the I' point. It has three branches: the heavy hole
band with the smallest curvature, a light hole band with a larger curvature,
and a split-off band at a different energy. We notice that for GaAs the con-
duction band minimum and the valence band maximum are both at k = 0;
therefore it is direct band gap. Silicon, on the other hand, has six equivalent
conduction minima at X along the six equivalent (100) directions; therefore,
it is indirect.
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Figure 3-10

Realistic band structures in semiconductors: (a) conduction and valence bands in Si and GaAs along
[111] and [100]; (b) ellipsoidal constant energy surface for Si, near the six conduction band minima

along the X-directions. (From Chelikowsky and Cohen, Phys. Rev. B14, 556, 1976.)

Figure 3-10b shows the constant energy surface for electrons in one of
the six conduction bands for Si. The way to relate these surfaces to the band
structures shown in Fig. 3—10a is to consider a certain value of energy, and
determine all the k vectors in three dimensions for which we get this energy.
We find that for Si we have six cigar-shaped ellipsoidal equi-energy surfaces
near the conduction band minima along the six equivalent X-directions,
with a longitudinal effective mass, m,, along the major axis, and two trans-
verse effective masses, m,, along the minor axes. For GaAs, the conduction
band is more or less spherical for low energies. On the other hand, we have
warped spherical surfaces in the valence band. The importance of these
surfaces will be clear in Sections 3.3.2 and 3.4.1 when we consider different
types of effective masses in semiconductors.

In any calculation involving the mass of the charge carriers, we must
use effective mass values for the particular material involved. In all subse-
quent discussions, the electron effective mass is denoted by m, and the hole
effective mass by m,,. The n subscript indicates the electron as a negative
charge carrier, and the p subscript indicates the hole as a positive charge
carrier.

Conduction band
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There is nothing mysterious about the concept of an “effective” mass,
m,,,and about the fact that it is different in different semiconductors. Indeed,
the “true” mass of an electron, m, is the same in Si, Ge, or GaAs—it is the
same as for a free electron in vacuum. To understand why the effective mass
is different from the true mass, consider Newton’s second law, which states
that the time rate of change of momentum is the force.

dpldt = d(mv)/dt = Force (3-5a)

An electron in a crystal experiences a total force F;; + F.,, where F,;
is the collection of internal periodic crystal forces, and F.,, is the externally
applied force. It is inefficient to solve this complicated problem involving
the periodic crystal potential (which is obviously different in different semi-
conductors) every time we try to solve a semiconductor device problem. It
is better to solve the complicated problem of carrier motion in the periodic
crystal potential just once, and encapsulate that information in what is called
the band structure, (E, k), whose curvature gives us the effective mass, m,,.
The electron then responds to external forces with this new m,. For carriers
near the parabolic band extrema where the effective mass is as described,
Newton’s law is then written as:

d(m;;v)/d[ = Fext (B_Sb)

This is clearly an enormous simplification compared to the more
detailed problem. Obviously, the periodic crystal forces depend on the details
of a specific semiconductor; therefore, the effective mass is different in dif-
ferent materials.

The velocity of the electron, v, is the group velocity of a quantum
mechanical electron wavepacket that we introduced in Section 1.5.

v = dw/dk = (1/#)dE/dk (3-5¢)

If E(k) is given by a simple parabolic relation as in Eq. (3-4), we see that
v = fk/m,* = p/m,*. But in general, the carrier velocity is proportional
to the slope of the band structure. So, for instance, if an electron is at the Si
conduction band minimum (Fig. 3-10a), its velocity is zero, even though Ak
is nonzero here. For simple parabolic E(k) as in Eq. (3-4),

Eq. (3-5b) can then also be written as F., = d(%k)/dt (3-5d)

Since, F.y, is not the fotal force imposed on the electron, clearly %k
cannot be the true momentum. It is called the crystal momentum or quasi-
momentum. Equations (3-5¢) and (3-5d) are the fundamental equations
governing carrier motion in semiconductors, and are known as semi-classical
dynamics.

Once we determine the band curvature effective mass components
from the orientation-dependent (E, k), we have to combine them appro-
priately for different types of calculations. We shall see in Section 3.3.2 that
when we are interested in determining the numbers of carriers in the bands,
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we have to use a “density-of-states” effective mass by taking the geometric
mean of the band curvature effective masses, and the number of equivalent
band extrema. On the other hand, we will find in Section 3.4.1 that in prob-
lems involving the motion of carriers, one must take the harmonic mean of
the band curvature effective masses to get the “conductivity” effective mass.

3.2.3 Intrinsic Material

A perfect semiconductor crystal with no impurities or lattice defects is called
an intrinsic semiconductor. In such material there are no charge carriers
at 0 K, since the valence band is filled with electrons and the conduction
band is empty. At higher temperatures EHPs are generated as valence band
electrons are excited thermally across the band gap to the conduction band.
These EHPs are the only charge carriers in intrinsic material.

The generation of EHPs can be visualized in a qualitative way by con-
sidering the breaking of covalent bonds in the crystal lattice (Fig. 3-11).
If one of the Si valence electrons is broken away from its position in the
bonding structure such that it becomes free to move about in the lattice, a
conduction electron is created and a broken bond (hole) is left behind. The
energy required to break the bond is the band gap energy E,. This model
helps in visualizing the physical mechanism of EHP creation, but the energy
band model is more productive for purposes of quantitative calculation. One
important difficulty in the “broken bond” model is that the free electron and
the hole seem deceptively localized in the lattice. Actually, the positions of
the free electron and the hole are spread out over several lattice spacings
and should be considered quantum mechanically by probability distributions
(see Section 2.4).

Since the electrons and holes are created in pairs, the conduction band
electron concentration n (electrons per cm®) is equal to the concentration of
holes in the valence band p (holes per cm?). Each of these intrinsic carrier
concentrations is commonly referred to as n;. Thus for intrinsic material

n=p=mn (3-6)

At a given temperature there is a certain concentration of EHPs n,.
Obviously, if a steady state carrier concentration is maintained, there must

n=p=mn
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Figure 3-11
Electron-hole
pairs in the
covalent bonding
model of the

Si crystal.
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be recombination of EHPs at the same rate at which they are generated.
Recombination occurs when an electron in the conduction band makes a
transition (direct or indirect) to an empty state (hole) in the valence band,
thus annihilating the pair. If we denote the generation rate of EHPs as g;
(EHP/cm?®-s) and the recombination rate as r;, equilibrium requires that

rp = &i (3-7a)

Each of these rates is temperature dependent. For example, g,(7)
increases when the temperature is raised, and a new carrier concentration
n; is established such that the higher recombination rate r;(7) just balances
generation. At any temperature, we can predict that the rate of recombina-
tion of electrons and holes 7; is proportional to the equilibrium concentration
of electrons n, and the concentration of holes p:

1= angpy = an; =g (3-7b)

The factor «, is a constant of proportionality which depends on the par-
ticular mechanism by which recombination takes place. We shall discuss the
calculation of #; as a function of temperature in Section 3.3.3; recombination
processes will be discussed in Chapter 4.

3.2.4 Extrinsic Material

In addition to the intrinsic carriers generated thermally, it is possible to cre-
ate carriers in semiconductors by purposely introducing impurities into the
crystal. This process, called doping, is the most common technique for varying
the conductivity of semiconductors. By doping, a crystal can be altered so
that it has a predominance of either electrons or holes. Thus there are two
types of doped semiconductors, n-type (mostly electrons) and p-type (mostly
holes). When a crystal is doped such that the equilibrium carrier concentra-
tions n, and p, are different from the intrinsic carrier concentration #n, the
material is said to be extrinsic.

When impurities or lattice defects are introduced into an otherwise
perfect crystal, additional levels are created in the energy band structure,
usually within the band gap. For example, an impurity from column V of the
periodic table (P, As, and Sb) introduces an energy level very near the con-
duction band in Ge or Si. This level is filled with electrons at 0 K, and very
little thermal energy is required to excite these electrons to the conduction
band (Fig. 3-12a). Thus at about 50-100 K virtually all of the electrons in
the impurity level are “donated” to the conduction band. Such an impurity
level is called a donor level, and the column V impurities in Ge or Si are
called donor impurities. From Fig. 3—-12a we note that the material doped
with donor impurities can have a considerable concentration of electrons in
the conduction band, even when the temperature is too low for the intrinsic
EHP concentration to be appreciable. Thus semiconductors doped with a
significant number of donor atoms will have n, >> (n;, p,) at room tempera-
ture. This is n-type material.
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Atoms from column III (B, Al, Ga, and In) introduce impurity levels
in Ge or Si near the valence band. These levels are empty of electrons at
0 K (Fig. 3-12b). At low temperatures, enough thermal energy is available
to excite electrons from the valence band into the impurity level, leaving
behind holes in the valence band. Since this type of impurity level “accepts”
electrons from the valence band, it is called an acceptor level, and the column
III impurities are acceptor impurities in Ge and Si. As Fig. 3-12b indicates,
doping with acceptor impurities can create a semiconductor with a hole
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Figure 3-12
Energy band
model and
chemical bond
model of dopants
in semiconductors:
(a) donation of
electrons from
donor level to
conduction band;
(b) acceptance
of valence band
electrons by an
acceptor level,
and the resulting
creation of holes;
(c) donor and
acceptor atoms
in the covalent
bonding model of
a Si crystal.
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EXAMPLE 3-3

concentration p, much greater than the conduction band electron concen-
tration n, (this type is p-type material).

In the covalent bonding model, donor and acceptor atoms can be visu-
alized as shown in Fig. 3-12c. An As atom (column V) in the Si lattice has
the four necessary valence electrons to complete the covalent bonds with the
neighboring Si atoms, plus one extra electron. This fifth electron does not fit
into the bonding structure of the lattice and is therefore loosely bound to
the As atom. A small amount of thermal energy enables this extra electron
to overcome its coulombic binding to the impurity atom and be donated to
the lattice as a whole. Thus it is free to participate in current conduction. This
process is a qualitative model of the excitation of electrons out of a donor
level and into the conduction band (Fig. 3-12a). Similarly, the column III
impurity B has only three valence electrons to contribute to the covalent
bonding (Fig. 3-12c¢), thereby leaving one bond incomplete. With a small
amount of thermal energy, this incomplete bond can be transferred to other
atoms as the bonding electrons exchange positions. Again, the idea of an
electron “hopping” from an adjacent bond into the incomplete bond at the
B site provides some physical insight into the behavior of an acceptor, but
the model of Fig. 3-12b is preferable for most discussions.

We can calculate rather simply the approximate energy required to
excite the fifth electron of a donor atom into the conduction band (the donor
binding energy). Let us assume for rough calculations that the As atom of
Fig. 3—-12c has its four covalent bonding electrons rather tightly bound and
the fifth “extra” electron loosely bound to the atom. We can approximate
this situation by using the Bohr model results, considering the loosely bound
electron as ranging about the tightly bound “core” electrons in a hydrogen-
like orbit. From Eq. (2-15) the magnitude of the ground-state energy (n = 1)
of such an electron is

mq4

E =
2K*H*
The value of K must be modified from the free-space value 4e, used
in the hydrogen atom problem to
K = 4mege, (3-9)

where €, is the relative dielectric constant of the semiconductor material.
In addition, we must use the conductivity effective mass m,, typical of the
semiconductor, discussed in more detail in Section 3.4.1.

(3-8)

It was mentioned in Section 3.2 that the covalent bonding model gives a
false impression of the localization of carriers. As an illustration, calculate
the radius of the electron orbit around the donor in Fig. 3—12c, assuming
a ground state hydrogen-like orbit in Si. Compare with the Si lattice con-
stant. Use m,, = 0.26 m, for Si.

SOLUTION

From Eq. (2-10) with » = 1 and using €, = 11.8 for Si,
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dmeeh  11.8(8.85 X 10712)(6.63 X 1073%)2
"T U m(026)(911 X 10°Y)(1.6 X 1079
r=241x10"m = 241A
Note that this is more than four lattice spacings a = 5.43 A.

Generally, the column V donor levels lie approximately 0.01 eV below
the conduction band in Ge, and the column III acceptor levels lie about
0.01 eV above the valence band. In Si the usual donor and acceptor levels
lie about 0.03-0.06 eV from a band edge.

In ITI-V compounds, column VI impurities occupying column V sites
serve as donors. For example, S, Se, and Te are donors in GaAs, since they
substitute for As and provide an extra electron compared with the As atom.
Similarly, impurities from column II (Be, Zn, Cd) substitute for column III
atoms to form acceptors in the III-V compounds. A more ambiguous case
arises when a I1I-V material is doped with Si or Ge, from column IV. These
impurities are called amphoteric, meaning that Si or Ge can serve as donors
or acceptors depending on whether they reside on the column III or col-
umn V sublattice of the crystal. In GaAs it is common for Si impurities to
occupy Ga sites. Since the Si has an extra electron compared with the Ga
it replaces, it serves as a donor. However, an excess of As vacancies arising
during growth or processing of the GaAs can cause Si impurities to occupy
As sites, where they serve as acceptors.

The importance of doping will become obvious when we discuss elec-
tronic devices made from junctions between p-type and n-type semiconduc-
tor material. The extent to which doping controls the electronic properties of
semiconductors can be illustrated here by considering changes in the sample
resistance which occur with doping. In Si, for example, the intrinsic carrier
concentration 7, is about 10'°cm ™ at room temperature. If we dope Si with
10" As atoms/cm?®, the conduction electron concentration changes by five
orders of magnitude. The resistivity of Si changes from about 2 X 10° Q-cm
to 5 Q-cm with this doping.

When a semiconductor is doped n-type or p-type,one type of carrier domi-
nates. In the example given above, the conduction band electrons outnumber the
holes in the valence band by many orders of magnitude. We refer to the small
number of holes in n-type material as minority carriers and the relatively large
number of conduction band electrons as majority carriers. Similarly, electrons
are the minority carriers in p-type material, and holes are the majority carriers.

3.2.5 Electrons and Holes in Quantum Wells

We have discussed single-valued (discrete) energy levels in the band gap
arising from doping, and a continuum of allowed states in the valence and
conduction bands. A third possibility is the formation of discrete levels for
electrons and holes as a result of quantum-mechanical confinement.
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One of the most useful applications of molecular beam epitaxy (MBE)
or organometallic vapor-phase epitaxy (OMVPE) growth of multilayer com-
pound semiconductors, as described in Section 1.4, is the fact that a continu-
ous single crystal can be grown in which adjacent layers have different band
gaps. For example, Fig. 3-13 shows the spatial variation in conduction and
valence bands for a multilayer structure in which a very thin layer of GaAs
is sandwiched between two layers of AlGaAs, which has a wider band gap
than the GaAs. We will discuss the details of such heterojunctions (junctions
between dissimilar materials) in Section 5.8. It is interesting to point out here,
however, that a consequence of confining electrons and holes in a very thin
layer is that these particles behave according to the particle in a potential
well problem in the confinement direction, with quantum states calculated
in Section 2.4.3. (The particles are actually free to move in the other two
directions, but we will ignore that for now. In Section 8.4.6, we discuss that
we form two-dimensional electron and hole gases in such quantum wells,
leading to formation of “subbands,” rather than discrete quantum states as
discussed here.) Therefore, instead of having the continuum of states nor-
mally available in the conduction band, the conduction band electrons in the
narrow-gap material are confined to discrete quantum states as described by
Eq. (2-33), modified for effective mass and finite barrier height. Similarly,
the states in the valence band available for holes are restricted to discrete
levels in the quantum well. This is one of the clearest demonstrations of the
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Figure 3-13

Energy band discontinuities for a thin layer of GaAs sandwiched between layers of wider band gap
AlGaAs. In this case, the GaAs region is so thin that quantum states are formed in the valence and
conduction bands. Electrons in the GaAs conduction band reside on “particle in a potential well” states
such as E; shown here, rather than in the usual conduction band states. Holes in the quantum well
occupy similar discrete states, such as Ey.
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quantum mechanical results discussed in Chapter 2. From a practical device
point of view, the formation of discrete quantum states in the GaAs layer of
Fig. 3-13 changes the energy at which photons can be emitted. An electron
on one of the discrete conduction band states (£, in Fig. 3-13) can make a
transition to an empty discrete valence band state in the GaAs quantum well
(such as E}), giving off a photon of energy E, + E; + E,, greater than the
GaAs band gap. Semiconductor lasers have been made in which such a quan-
tum well is used to raise the energy of the transition from the infrared, typical
of GaAs, to the red portion of the spectrum. We will see other examples of
quantum wells in semiconductor devices in later chapters.

In calculating semiconductor electrical properties and analyzing device behav-
ior, it is often necessary to know the number of charge carriers per cm® in the
material. The majority carrier concentration is usually obvious in heavily doped
material, since one majority carrier is obtained for each impurity atom (for the
standard doping impurities). The concentration of minority carriers is not obvi-
ous, however, nor is the temperature dependence of the carrier concentrations.

To obtain equations for the carrier concentrations we must investi-
gate the distribution of carriers over the available energy states. This type
of distribution is not difficult to calculate, but the derivation requires some
background in statistical methods. Since we are primarily concerned here
with the application of these results to semiconductor materials and devices,
we shall accept the distribution function as given.

3.3.1 The Fermi Level

Electrons in solids obey Fermi—Dirac statistics.® In the development of this
type of statistics, one must consider the indistinguishability of the electrons,
their wave nature, and the Pauli exclusion principle. The rather simple result
of these statistical arguments is that the distribution of electrons over a range
of allowed energy levels at thermal equilibrium is

1

RE) = T j it (3-10)

where kis Boltzmann’s constant (k = 8.62 X 107°eV/K = 1.38 X 10" J/K).
The function f(E), the Fermi-Dirac distribution function, gives the probability

3Examples of other types of statistics are Maxwell-Boltzmann for classical particles (e.g., gas) and Bose—
Einstein for photons. For two discrete energy levels, E, and E; (with E, > E,), classical gas atoms follow
a Boltzmann distribution; the number of atoms n, in state E, is related to the number n, in E, at thermal
equilibrium by

n,  Npe ™4 N,

- N ey
mo N BN,

assuming the two levels have N, and N; number of states, respectively. The exponential term exp(-AE/kT)
is commonly called the Boltzmann factor. It appears also in the denominator of the Fermi-Dirac distribution
function. We shall return to the Boltzmann distribution in Chapter 8 in discussions of the properties of lasers.
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Figure 3-14

The Fermi-Dirac
distribution
function.

(Derivation in
Appendix V)

that an available energy state at £ will be occupied by an electron at absolute
temperature 7. The quantity E is called the Fermi level, and it represents
an important quantity in the analysis of semiconductor behavior. We notice
that, for an energy E equal to the Fermi level energy Ef, the occupation
probability is

JUER) = [1 + BBt = o = 2 (3-11)

Thus an energy state at the Fermi level has a probability of '/, of being
occupied by an electron.

A closer examination of f(E) indicates that at 0 K the distribution takes
the simple rectangular form shown in Fig. 3-14. With T = 0 in the denomi-
nator of the exponent, f(E) is 1/(1 + 0) = 1 when the exponent is negative
(E < Ep), and is 1/(1 + ») = 0 when the exponent is positive (E > Ep).
This rectangular distribution implies that at 0 K every available energy state
up to Eris filled with electrons, and all states above Er are empty.

At temperatures higher than 0 K, some probability exists for states
above the Fermi level to be filled. For example, at T = T; in Fig. 3-14 there
is some probability f(E) that states above E are filled, and there is a corre-
sponding probability [1—f(E)] that states below E, are empty. The Fermi
function is symmetrical about E for all temperatures; that is, the probability
f(Ep + AE) that a state AE above E is filled is the same as the probability
[1 — f(Er — AE)] that a state AE below E is empty. The symmetry of the
distribution of empty and filled states about Er makes the Fermi level a
natural reference point in calculations of electron and hole concentrations
in semiconductors.

In applying the Fermi-Dirac distribution to semiconductors, we must
recall that f( E) is the probability of occupancy of an available state at E. Thus
if there is no available state at E (e.g., in the band gap of a semiconductor),
there is no possibility of finding an electron there. We can best visualize
the relation between f(E) and the band structure by turning the f(E) vs. E
diagram on its side so that the E scale corresponds to the energies of the
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f(E) —=

f(E) 1 12 0 f(E) 1 12 0
(a) Intrinsic (b) n-type

[1-/(E)] E

/

f(E) 1 12 0
(c) p-type

band diagram (Fig. 3-15). For intrinsic material we know that the concentra-
tion of holes in the valence band is equal to the concentration of electrons
in the conduction band. Therefore, the Fermi level E must lie at the middle
of the band gap in intrinsic material.* Since f(E) is symmetrical about E,
the electron probability “tail” of f(E) extending into the conduction band
of Fig. 3-15a is symmetrical with the hole probability tail [1 — f(E)] in the
valence band. The distribution function has values within the band gap
between E, and E,, but there are no energy states available, and no electron
occupancy results from f(E) in this range.

The tails in f(E) are exaggerated in Fig. 3—15 for illustrative purposes.
Actually, the probability values at £, and E, are quite small for intrinsic material
at reasonable temperatures. For example,in Siat300K,n; = p; = 10" cm ™,
whereas the densities of available states at E, and E, are on the order of
10Y cm 3. Thus the probability of occupancy f(E) for an individual state in
the conduction band and the hole probability [1 — f(E)] for a state in the
valence band are quite small. Because of the relatively large density of states
in each band, small changes in f(E) can result in significant changes in carrier
concentration.

In n-type material there is a high concentration of electrons in the
conduction band compared with the hole concentration in the valence band

“Actually the intrinsic Ef is displaced slightly from the middle of the gap, since the densities of available
states in the valence and conduction bands are not equal (Section 3.3.2).
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The Fermi
distribution
function applied
to semiconductors:
(a) intrinsic
material; (b)
n-type material;
(c) ptype
material.
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(recall Fig. 3-12a). Thus in n-type material the distribution function f(E)
must lie above its intrinsic position on the energy scale (Fig. 3-15b). Since
f(E) retains its shape for a particular temperature, the larger concentration
of electrons at E, in n-type material implies a correspondingly smaller hole
concentration at E,. We notice that the value of f(E) for each energy level
in the conduction band (and therefore the total electron concentration n)
increases as Er moves closer to E.. Thus the energy difference (E. — Ey)
gives a measure of n; we shall express this relation mathematically in the
following section.

For p-type material the Fermi level lies near the valence band (Fig. 3—15¢)
such that the [1 — f(E)] tail below E, is larger than the f(E) tail above E..
The value of (E — E,) indicates how strongly p-type the material is.

It is usually inconvenient to draw f(E) vs. E on every energy band
diagram to indicate the electron and hole distributions. Therefore, it is com-
mon practice merely to indicate the position of Erin band diagrams. This
is sufficient information, since for a particular temperature the position of
Erimplies the distributions in Fig. 3-15.

3.3.2 Electron and Hole Concentrations at Equilibrium

The Fermi distribution function can be used to calculate the concentrations
of electrons and holes in a semiconductor, if the densities of available states
in the valence and conduction bands are known. For example, the concentra-
tion of electrons in the conduction band is

ny = / mf(E)N(E)dE (3-12)
E,

where N(E)dE is the density of states (cm°) in the energy range dE. The
subscript 0 used with the electron and hole concentration symbols (7, p)
indicates equilibrium conditions. The number of electrons per unit volume
in the energy range dE is the product of the density of states and the prob-
ability of occupancy f(E). Thus the total electron concentration is the integral
over the entire conduction band, as in Eq. (3-12).% The function N(E) can
be calculated by using quantum mechanics and the Pauli exclusion principle
(Appendix IV).

It is shown in Appendix IV that N(E) is proportional to E'/2 so the
density of states in the conduction band increases with electron energy. On
the other hand, the Fermi function becomes extremely small for large ener-
gies. The result is that the product f( E)N(FE) decreases rapidly above E.,and
very few electrons occupy energy states far above the conduction band edge.
Similarly, the probability of finding an empty state (hole) in the valence band

5The upper limit is actually improper in Eq. (3-12), since the conduction band does not extend to infinite
energy. This is unimportant in the calculation of ny, however, since f(E) becomes negligibly small for large
values of E. Most electrons occupy states near the bottom of the conduction band at equilibrium.
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[1 — f(E)] decreases rapidly below E,,and most holes occupy states near the
top of the valence band. This effect is demonstrated in Fig. 3-16, which shows
the density of available states, the Fermi function, and the resulting number
of electrons and holes occupying available energy states in the conduction
and valence bands at thermal equilibrium (i.e., with no excitations except
thermal energy). For holes, increasing energy points down in Fig. 3-16, since
the E scale refers to electron energy.

The result of the integration of Eq. (3-12) is the same as that obtained
if we represent all of the distributed electron states in the conduction band
by an effective density of states N, located at the conduction band edge E,.

E E E
Electrons
E, -——-E,
\Holes
(a) Intrinsic

EL' > - Ec
5 N S ) AN E,
(b) n-type
N(E) f(E)
EC 777777777777777 EC
E, _———E,
N(E) [1-f(E)]
(c) p-type
0 05 1.0 Carrier
N(E) f(E) concentration
Figure 3-16

Schematic band diagram, density of states, Fermi-Dirac distribution, and the carrier concentrations
for (a) intrinsic, (b) ntype, and (c) ptype semiconductors at thermal equilibrium.
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Therefore, the conduction band electron concentration is simply the effective
density of states at E, times the probability of occupancy at E,°

ny = ch(Ec) (3_13)

In this expression we assume the Fermi level Ey lies at least several kT
below the conduction band. Then the exponential term is large compared
with unity, and the Fermi function f(E,) can be simplified as

— 1 ~(E.~Ep)/kT
RE) = 1 5 o BT~ € (EE/ (3-14)
Since kT at room temperature is only 0.026 eV, this is generally a good
approximation. For this condition the concentration of electrons in the con-
duction band is

ny = N, EEDKT| (3-15)

The effective density of states N, is shown in Appendix IV to be

2mm, kT2
NC =2 T (3—l6£l)

Since the quantities in Eq. (3-16a) are known, values of N, can be
tabulated as a function of temperature. As Eq. (3-15) indicates, the electron
concentration increases as £y moves closer to the conduction band. This is
the result we would predict from Fig. 3-15b.

In Eq. (3-16a), m, is the density-of-states effective mass for electrons.
To illustrate how it is obtained from the band curvature effective masses
mentioned in Section 3.2.2, let us consider the 6 equivalent conduction band
minima along the X-directions for Si. Looking at the cigar-shaped equi-
energy surfaces in Fig. 3-10b, we find that we have more than one band
curvature to deal with in calculating effective masses. There is a longitudinal
effective mass m, along the major axis of the ellipsoid, and the transverse
effective mass m, along the two minor axes. Since we have (1, )*? appearing
in the density-of-states expression Eq. (3—16a), by using dimensional equiva-
lence and adding contributions from all 6 valleys, we get

(m,)*? = 6(m;m)"/? (3-16b)

It can be seen that this is the geometric mean of the effective masses.

%The simple expression for ny obtained in Eq. (3-13) is the direct result of integrating Eq. (3-12), as in
Appendix IV. Equations (3-15) and (3-19) properly include the effects of the conduction and valence
bands through the density-of-states terms.
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Calculate the density-of-states effective mass of electrons in Si.

EXAMPLE 3-4
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For Si, m; = 0.98 my; m, = 0.19 m, from Appendix III.
There are six equivalent X valleys in the conduction band.

m, = 67°[0.98(0.19)*]'3m, = 1.1 m,

Note: For GaAs, the conduction band equi-energy surfaces are spheri-
cal. So there is only one band curvature effective mass, and it is equal to
the density-of-states effective mass (= 0.067 my).

By similar arguments, the concentration of holes in the valence band is

po = N1 = f(E))] (3-17)

where N, is the effective density of states in the valence band. The prob-
ability of finding an empty state at E,, is

1

_ __ —(E—E)/kT
1= fE) =1 - T ammr = ¢ (ErE)/ (3-18)

for Eylarger than E, by several kT From these equations, the concentration
of holes in the valence band is

py = N,e B EIKT| (3-19)
The effective density of states in the valence band reduced to the band
edge is
2mm kT3 o
NV =2 T 372())

As expected from Fig. 3-15c¢, Eq. (3-19) predicts that the hole concen-
tration increases as Er moves closer to the valence band.

The electron and hole concentrations predicted by Egs. (3-15) and
(3-19) are valid whether the material is intrinsic or doped, provided thermal
equilibrium is maintained. Thus for intrinsic material, Ey. lies at some intrinsic
level E; near the middle of the band gap (Fig. 3-15a), and the intrinsic elec-
tron and hole concentrations are

n, = N BBy = N o (E-EJKT (3-21)

The product of n, and p, at equilibrium is a constant for a particular
material and temperature, even if the doping is varied:

ngpo = (N,e EENKTY(N o EEJKTY = N N o (E—E)/KT (3-223)
= N.N,e 5-T
np; = (Ne E-EVTY (N g E-EJKTy — N N o E/kT (3-22b)

SOLUTION
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EXAMPLE 3-5

The intrinsic electron and hole concentrations are equal (since the carriers
are created in pairs), n; = p;; thus the intrinsic concentration is

n; = \/ NCNV e_Eg/ZkT 3*23)

The constant product of electron and hole concentrations in Eq. (3-22)
can be written conveniently as

52

This is an important relation, and we shall use it extensively in later cal-
culations. The intrinsic concentration for Si at room temperature is approxi-
mately n; = 1.5 X 10" cm ™.

Comparing Egs. (3-21) and (3-23), we note that the intrinsic level E;
is the middle of the band gap (E, — E; = E,/2), if the effective densities
of states N, and N, are equal. There is usually some difference in effective
mass for electrons and holes, however, and N, and N, are slightly different
as Egs. (3-16) and (3-20) indicate. The intrinsic level E; is displaced from the
middle of the band gap, more for GaAs than for Ge or Si.

Another convenient way of writing Egs. (3-15) and (3-19) is

ny = neErEIKT (3-25a)

po = nel 5 EIKT (3-25b)

obtained by the application of Eq. (3-21). This form of the equations indi-
cates directly that the electron concentrations is n; when Efis at the intrinsic
level E;, and that n, increases exponentially as the Fermi level moves away
from E; toward the conduction band. Similarly, the hole concentration p,
varies from »; to larger values as Er moves from E; toward the valence band.
Since these equations reveal the qualitative features of carrier concentration
so directly, they are particularly convenient to remember.

A Sisample is doped with 107 As atoms/cm?®. What is the equilibrium hole
concentration p, at 300 K? Where is E relative to E;?

SOLUTION

Since N, >> n;, we can approximate n, = N, and

n 225 x 107

Po =

. o7 =225 %X 10°cm™
0

From Eq. (3-25a), we have

17

ny 10
Ep— E = kTIn "% = 0.0259 In———— = 0.407 eV
n; 1.5 X 10
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The resulting band diagram is:

0.407 eV

1.1eV - = E

3.3.3 Temperature Dependence of Carrier Concentrations

The variation of carrier concentration with temperature is indicated by
Eq. (3-25). Initially, the variation of n, and p, with 7 seems relatively
straightforward in these relations. The problem is complicated, however, by
the fact that n; has a strong temperature dependence [Eq. (3-23)] and that E
can also vary with temperature. Let us begin by examining the intrinsic car-
rier concentration. By combining Egs. (3-23), (3-16a), and (3-20) we obtain

2wkT
hZ

32
) = o ) iyt (3-26)
The exponential temperature dependence dominates r,(T"), and a plot
of In n; vs. 10°/ T appears linear (Fig. 3-17).” In this figure we neglect varia-
tions due to the 7%/ dependence of the density-of-states function and the
fact that E, varies somewhat with temperature.® The value of #; at any tem-
perature is a definite number for a given semiconductor, and is known for
most materials. Thus we can take n; as given in calculating n, or p, from
Eq. (3-25).°
With n; and T given, the unknowns in Eq. (3-25) are the carrier concen-
trations and the Fermi level position relative to E. One of these two quan-
tities must be given if the other is to be found. If the carrier concentration
is held at a certain value, as in heavily doped extrinsic material, Er can be
obtained from Eq. (3-25). The temperature dependence of electron concen-
tration in a doped semiconductor can be visualized as shown in Fig. 3-18. In
this example, Si is doped n-type with a donor concentration N, of 10" cm™>.
At very low temperatures (large 1/7'), negligible intrinsic EHPs exist, and

"When plotting quantities such as carrier concentration, which involve a Boltzmann factor, it is common to
use an inverse temperature scale. This allows terms which are exponential in 1/T to appear linear in the
semi-logarithmic plot. When reading such graphs, remember that temperature increases from right to left.

8 or Si the band gap E, varies from about 1.11 eV at 300 K to about 1.16 eV at O K.

9Care must be taken to use consistent units in these calculations. For example, if an energy such as Eg is
expressed in electron volts (eV), it should be multiplied by g (1.6 x 107 17C) to convert fo joules if k is
in J/K; alternatively, E; can be kept in eV and the value of k in eV/K can be used. At 300 K we can use
kT = 0.0259 eV and E in eV.
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Figure 3-17
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the donor electrons are bound to the donor atoms. As the temperature is
raised, these electrons are donated to the conduction band, and at about
100 K (1000/T = 10) all the donor atoms are ionized. This temperature
range is called the ionization region. Once the donors are ionized, the con-
duction band electron concentrationis n, = N, = 10" cm ™3, since one elec-
tron is obtained for each donor atom. When every available extrinsic electron
has been transferred to the conduction band, n, is virtually constant with
temperature until the concentration of intrinsic carriers n; becomes compa-
rable to the extrinsic concentration N, Finally, at higher temperatures #; is
much greater than N, and the intrinsic carriers dominate. In most devices
it is desirable to control the carrier concentration by doping rather than by
thermal EHP generation. Thus one usually dopes the material such that the
extrinsic range extends beyond the highest temperature at which the device
is to be used.
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3.3.4 Compensation and Space Charge Neutrality

When the concept of doping was introduced, we assumed the material con-
tained either N, donors or N, acceptors, so that the extrinsic majority car-
rier concentrations were n, = N, or p, = N, respectively, for the n-type
or p-type material. It often happens, however, that a semiconductor con-
tains both donors and acceptors. For example, Fig. 3-19 illustrates a semi-
conductor for which both donors and acceptors are present, but N; > N,.
The predominance of donors makes the material n-type, and the Fermi level
is therefore in the upper part of the band gap. Since E; is well above the
acceptor level E,, this level is essentially filled with electrons. However, with
E above E;, we cannot expect a hole concentration in the valence band

E [ (] (] (] [ [ [
a

EV o000 o000 LB o000 o000
00 0000000000000 000000000
00 00000000000 OCOCFOCOIOIONOINOIOINOIO
00 0000000000000 000000000
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Figure 3-18
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vs. inverse
temperature for

Si doped with
10'% donors/cm®.

Figure 3-19
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in an n-type
semiconductor
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commensurate with the acceptor concentration. In fact, the filling of the E,
states occurs at the expense of the donated conduction band electrons. The
mechanism can be visualized as follows: Assume an acceptor state is filled
with a valence band electron as described in Fig. 3-12b, with a hole resulting
in the valence band. This hole is then filled by recombination with one of
the conduction band electrons. Extending this logic to all the acceptor atoms,
we expect the resultant concentration of electrons in the conduction band
to be N, — N, instead of the total N,. This process is called compensation.
By this process it is possible to begin with an n-type semiconductor and add
acceptors until N, = N, and no donated electrons remain in the conduction
band. In such compensated material, n, = n; = p, and intrinsic conduction
is obtained. With further acceptor doping the semiconductor becomes p-type
with a hole concentration of essentially N,— N, .

The exact relationship among the electron, hole, donor, and acceptor
concentrations can be obtained by considering the requirements for space
charge neutrality. If the material is to remain electrostatically neutral, the sum
of the positive charges (holes and ionized donor atoms) must balance the
sum of the negative charges (electrons and ionized acceptor atoms):

po + Nj = ng+ N, 3-27)

Thus in Fig. 3-19 the net electron concentration in the conduction band is

ny = po+ (Ng — N,) (3-28)

If the material is doped n-type (1, => p,) and all the impurities are
ionized, we can approximate Eq. (3-28) by n, = N, — N,.

Since the intrinsic semiconductor itself is electrostatically neutral and

the doping atoms we add are also neutral, the requirement of Eq. (3-27) must

be maintained at equilibrium. The electron and hole concentrations and the
Fermi level adjust such that Egs. (3-27) and (3-25) are satisfied.

34

DRIFT OF
CARRIERS IN
ELECTRIC AND
MAGNETIC FIELDS

Knowledge of carrier concentrations in a solid is necessary for calculating
current flow in the presence of electric or magnetic fields. In addition to the
values of n and p, we must be able to take into account the collisions of the
charge carriers with the lattice and with the impurities. These processes will
affect the ease with which electrons and holes can flow through the crystal,
that is, their mobility within the solid. As should be expected, these collision
and scattering processes depend on temperature, which affects the thermal
motion of the lattice atoms and the velocity of the carriers.

3.4.1 Conductivity and Mobility

The charge carriers in a solid are in constant motion, even at thermal equilib-
rium. At room temperature, for example, the thermal motion of an individual
electron may be visualized as random scattering from lattice vibrations, impu-
rities, other electrons, and defects (Fig. 3-20a). Since the scattering is random,
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there is no net motion of the group of n electrons/cm’ over any period of
time. This is not true of an individual electron, of course. The probability of
the electron in Fig. 3-20a returning to its starting point after some time ¢ is
negligibly small. However, if a large number of electrons is considered (e.g.,
10" cm™ in an n-type semiconductor), there will be no preferred direction
of motion for the group of electrons and no net current flow.

If an electric field €, is applied in the x-direction, each electron expe-
riences a net force —¢é, from the field. This force may be insufficient to
alter appreciably the random path of an individual electron; the effect when
averaged over all the electrons, however, is a net motion of the group in the
—x-direction (Fig. 3-20b). If p, is the x-component of the total momentum
of the group, the force of the field on the n electrons/cm? is

dp,
dt lfiea

Initially, Eq. (3-29) seems to indicate a continuous acceleration of the
electrons in the —x-direction. This is not the case, however, because the net
acceleration of Eq. (3-29) is just balanced in steady state by the decelera-
tions of the collision processes. Thus while the steady field €, does produce
a net momentum p_,, the net rate of change of momentum when collisions
are included must be zero in the case of steady state current flow.

To find the total rate of momentum change from collisions, we must inves-
tigate the collision probabilities more closely. If the collisions are truly random,
there will be a constant probability of collision at any time for each electron.
Let us consider a group of N, electrons at time ¢ = 0 and define N(r) as the
number of electrons that save not undergone a collision by time ¢ The rate of
decrease in N(¢) at any time 7 is proportional to the number left unscattered at ¢,

- nqg¢, = (3-29)
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Figure 3-20

(a) Random
thermal motion
of an electron

in a solid; (b)
well-directed drift
velocity with an

applied electric
field.
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dN(r) 1
— - ?N(t) (3-30)

where 77! is a constant of proportionality.
The solution to Eq. (3-30) is an exponential function
N(t) = Nye /! (3-31)

and 7 represents the mean time between scattering events,' called the mean
free time. The probability that any electron has a collision in the time inter-
val dt is dt /1. Thus the differential change in p, due to collisions in time dt is

dt
dp, = ~p. (3-32)
The rate of change of p, due to the decelerating effect of collisions is
dp, Px
- = —— 3-33
dt collisions i ( ’ )

The sum of acceleration and deceleration effects must be zero for
steady state. Taking the sum of Egs. (3-29) and (3-33), we have

- nqgé, = 0 (3-34)

The average momentum per electron is

P

<px> - ; —qié, (3_35)

where the angular brackets indicate an average over the entire group of
electrons. As expected for steady state, Eq. (3-35) indicates that the electrons
have on the average a constant net velocity in the negative x-direction:

(ve) = <r:i> = —;1; €, (3-36)

Actually, the individual electrons move in many directions by thermal
motion during a given time period, but Eq. (3-36) tells us the net drift of an
average electron in response to the electric field. The drift speed described
by Eq. (3-36) is usually much smaller than the random speed due to the
thermal motion vy,

The current density resulting from this net drift is just the number of
electrons crossing a unit area per unit time (n (v, ) ) multiplied by the charge
on the electron (—g):

19Equations (3-30) and (3-31) are typical of events dominated by random processes, and the forms

of these equations occur often in many branches of physics and engineering. For example, in the
radioactive decay of unstable nuclear isotopes, Ny nuclides decay exponentially with a mean lifetime 7.
Other examples will be found in this text, including the absorption of light in a semiconductor and the
recombination of excess EHPs.
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J, = —
ampere _ coulomb electrons cm
cm? electron cm?® s
Using Eq. (3-36) for the average velocity, we obtain
ng’t
Jx = * %x (3_38)
mn

Thus the current density is proportional to the electric field, as we
expect from Ohm’s law:

nq’t
J, = o€, whereo = —; (3-39)
mn

The conductivity o(2-cm) ! can be written

o = gnu,, Wwherepu, = — (3-40a)

qt

The quantity u,, called the electron mobility, describes the ease with
which electrons drift in the material. Mobility is a very important quantity in
characterizing semiconductor materials and in device development.

Here m,, is the conductivity effective mass for electrons, different from
the density-of-states effective mass mentioned in Eq. (3—-16b). While we use
the density-of-states effective mass to count the number of carriers in bands,
we must use the conductivity effective mass for charge transport problems.
To illustrate how it is obtained from the band curvature effective masses
mentioned in Section 3.2.2, once again let us consider the six equivalent con-
duction band minima along the X-directions for Si, with the band curvature
longitudinal effective mass, m1;, along the major axis of the ellipsoid, and the
transverse effective mass, m,, along the two minor axes (Fig. 3-10b). Since
we have 1/m,, in the mobility expression Eq. (3-40a), by using dimensional
equivalence, we can write the conductivity effective mass as the harmonic
mean of the band curvature effective masses.

= - ;( L, 2) (3-40b)

m, m m,

Calculate the conductivity effective mass of electrons in Si.

EXAMPLE 3-6
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For Si, m; = 0.98 mg; m, = 0.19 m, (Appendix I1T).
There are six equivalent X valleys in the conduction band.

1/m, = 1/3(1/m, + 1/m, + 1/m,) = 1/3(1/m; + 2/m,)

SOLUTION
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=k k)
= 3\098m, ~ 019 my,

m, = 0.26 m,

Note: For GaAs, the conduction band equi-energy surfaces are
spherical. So there is only one band curvature effective mass. (The

density of states effective mass and the conductivity effective mass are
both 0.067 m,.)

The mobility defined in Eq. (3—40a) can be expressed as the average
particle drift velocity per unit electric field. Comparing Egs. (3-36) and
(3-40a), we have

Wy = — ~ (3741)

The unit of mobility is (cm/s)/(V/em) = cm*/V-s, as Eq. (3-41) sug-
gests. The minus sign in the definition results in a positive value of mobility,
since electrons drift opposite to the field.

The current density can be written in terms of mobility as

Jx = an«n%x (3742)

This derivation has been based on the assumption that the cur-
rent is carried primarily by electrons. For hole conduction we change
ntop, —qto+q,and p,to w,, where p, = +(v,)/€, is the mobility for
holes. If both electrons and holes participate, we must modify Eq. (3-42) to

Ji = qlnp, + py)é, = o8, (3-43)

Values of ., and p,, are given for many of the common semiconductor
materials in Appendix II1. According to Eq. (3-40), the parameters deter-
mining mobility are m* and mean free time 7. Effective mass is a property of
the material’s band structure, as described by Eq. (3-3). Thus we expect m,
to be small in the strongly curved I’ minimum of the GaAs conduction band
(Fig. 3-6), with the result that ., is very high. In a more gradually curved
band, a larger m* in the denominator of Eq. (3-40) leads to a smaller value
of mobility. It is reasonable to expect that lighter particles are more mobile
than heavier particles (which is satisfying, since the common-sense value
of effective mass is not always apparent). The other parameter determin-
ing mobility is the mean time between scattering events, 7. In Section 3.4.3
we shall see that this is determined primarily by temperature and impurity
concentration in the semiconductor.
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3.4.2 Drift and Resistance

Let us look more closely at the drift of electrons and holes. If the semicon-
ductor bar of Fig. 3-21 contains both types of carrier, Eq. (3—43) gives the
conductivity of the material. The resistance of the bar is then

_pL_ L1
wt wt O

R (3-44)

where p is the resistivity (Q-cm). The physical mechanism of carrier drift
requires that the holes in the bar move as a group in the direction of the
electric field and that the electrons move as a group in the opposite direction.
Both the electron and the hole components of current are in the direction of
the field, since conventional current is positive in the direction of hole flow
and opposite to the direction of electron flow. The drift current described by
Eq. (3-43) is constant throughout the bar. A valid question arises, therefore,
concerning the nature of the electron and hole flow at the contacts and in the
external circuit. We should specify that the contacts to the bar of Fig. 3-21 are
ohmic, meaning that they are perfect sources and sinks of both carrier types
and have no special tendency to inject or collect either electrons or holes.
If we consider that current is carried around the external circuit by
electrons, there is no problem in visualizing electrons flowing into the bar at
one end and out at the other (always opposite to ). Thus for every electron
leaving the left end (x = 0) of the bar in Fig. 3-21, there is a correspond-
ing electron entering at x = L, so that the electron concentration in the
bar remains constant at n. But what happens to the holes at the contacts?
As a hole reaches the ohmic contact at x = L, it recombines with an elec-
tron, which must be supplied through the external circuit. As this hole disap-
pears, a corresponding hole must appear at x = 0 to maintain space charge

Electric field
current

Hole motion / Electron motion

Electron motion
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Figure 3-21
Drift of electrons
and holes in a
semiconductor

bar.
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Figure 3-22
Approximate
temperature
dependence of
mobility with
both lattice
and impurity
scattering.

neutrality. It is reasonable to consider the source of this hole as the genera-
tion of an EHP at x = 0, with the hole flowing into the bar and the electron
flowing into the external circuit.

3.4.3 Effects of Temperature and Doping on Mobility

The two basic types of scattering mechanisms that influence electron and
hole mobility are lattice scattering and impurity scattering. In lattice scattering
a carrier moving through the crystal is scattered by a vibration of the lattice,
resulting from the temperature.'! The frequency of such scattering events
increases as the temperature increases, since the thermal agitation of the lat-
tice becomes greater. Therefore, we should expect the mobility to decrease
as the sample is heated (Fig. 3-22). On the other hand, scattering from crys-
tal defects such as ionized impurities becomes the dominant mechanism at
low temperatures. Since the atoms of the cooler lattice are less agitated, lat-
tice scattering is less important; however, the thermal motion of the carriers
is also slower. Since a slowly moving carrier is likely to be scattered more
strongly by an interaction with a charged ion than is a carrier with greater
momentum, impurity scattering events cause a decrease in mobility with
decreasing temperature. As Fig. 3-22 indicates, the approximate temperature
dependencies are 7~/ for lattice scattering and 7°/? for impurity scattering.
Since the scattering probability of Eq. (3-32) is inversely proportional to the
mean free time and therefore to mobility, the mobilities due to two or more
scattering mechanisms add inversely:

1 1 1
—=—+ —+ ... (3-45)
W M 2

w (cm?/V-s)
(log scale)

Impurity scattering Lattice scattering

T (K)
(log scale)

MCollective vibrations of atoms in the crystal are called phonons. Thus lattice scattering is also known as
phonon scattering.
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As a result, the mechanism causing the lowest mobility value domi-
nates, as shown in Fig. 3-22.

As the concentration of impurities increases, the effects of impurity
scattering are felt at higher temperatures. For example, the electron mobil-
ity w, of intrinsic silicon at 300 K is 1350 cm?/(V-s). With a donor doping
concentration of 10" cm™, however, ., is 700 cm?/(V-s). Thus, the presence
of the 10" ionized donors/cm® introduces a significant amount of impurity
scattering. This effect is illustrated in Fig. 3-23, which shows the variation of
mobility with doping concentration at room temperature.
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Figure 3-23

Variation of mobility with total doping impurity concentration (N, + N) for Ge, Si, and GaAs at 300 K.
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EXAMPLE 3-7 (a) A Sibar 1 um long and 100 um? in cross-sectional area is doped
with 107 cm™ phosphorus. Find the current at 300 K with 10 V
applied.
(b) How long does it take an average electron to drift 1 pm in pure
Si at an electric field of 100 V/cm? Repeat for 10° V/cm.
SOLUTION (a) Find the current at 300 K with 10V applied for a Si bar 1 pm
long, 100 wm? in cross sectional area, and doped with 107 cm™
phosphorous.
. _ 10 V _ 5V .. .
With € = 10" om 10°zm the sample is in the velocity satura-
tion regime.
From Fig. 3-24, v, = 10" 2.
I=q-An-v,=1.6-10"C-10°cm?+ 1075107 ¢ = 0.16 A
(b) In pure Si, find time for an electron to drift I pm in an electric field
0f 100 5?2 For 10° 5 ?
. .mZ
From Appendix III, p,, = 1350 7
= € =1 o’ | 100 ¥ = 1.35-10° <
low field: Y4~ Pn" 3f 0 v 100em = 1.35-10"
IL 10~
=== — T —74-10"s = 0.74ns
Vg  1.35-10° %
high field: scattering limited velocity v, = 10" %2 from Figure 3-24
. L 10%cm .,
V.o 1om T 107's = 10 ps
107
5 o
>%
Figure 3-24 10°
Saturation of
electron drift
velocity at high , , , ,
electric fields 102 103 104 109
for Si.

& (Viem)
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3.4.4 High-Field Effects

One assumption implied in the derivation of Eq. (3-39) was that Ohm’s law is
valid in the carrier drift processes. That is, it was assumed that the drift current is
proportional to the electric field and that the proportionality constant (07) is not
a function of field €. This assumption is valid over a wide range of €. However,
large electric fields (> 10° V/cm) can cause the drift velocity and therefore the
currentJ = —gnv, to exhibit a sublinear dependence on the electric field. This
dependence of 0" upon is an example of a hot carrier effect, which implies that
the carrier drift velocity v, is comparable to the thermal velocity vy,

In many cases an upper limit is reached for the carrier drift velocity
in a high field (Fig. 3-24). This limit occurs near the mean thermal velocity
(=10"cm/s) and represents the point at which added energy imparted by
the field is transferred to the lattice rather than increasing the carrier veloc-
ity. The result of this scattering limited velocity is a fairly constant current at
high field. This behavior is typical of Si, Ge, and some other semiconductors.
However, there are other important effects in some materials; for example,
in Chapter 10 we shall discuss a decrease in electron velocity at high fields
for GaAs and certain other materials, which results in negative conductivity
and current instabilities in the sample. Another important high-field effect is
avalanche multiplication, which we shall discuss in Section 5.4.2.

3.4.5 The Hall Effect

If a magnetic field is applied perpendicular to the direction in which holes
drift in a p-type bar, the path of the holes tends to be deflected (Fig. 3-25).
Using vector notation, the total force on a single hole due to the electric and
magnetic fields is

F=¢g(€ +vX®B) (3-46)
Ix
B,
b4 7
| Ce
Lo S
/
/
(+) y -)
-./ @
Ay B
y P )
, ;,\‘ ”
/
x ,/ /
/ w o
; (@ X
1 / D
/
1

Figure 3-25
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In the y-direction the force is
F,=q(€, — v\B,) (3-47)

The important result of Eq. (3-47) is that unless an electric field €, is
established along the width of the bar, each hole will experience a net force
(and therefore an acceleration) in the —y-direction due to the gv, %8, product.
Therefore, to maintain a steady state flow of holes down the length of the
bar, the electric field €, must just balance the product v,%.:

€ = v, B, (3-48)

so that the net force F is zero. Physically, this electric field is set up when the
magnetic field shifts the hole distribution slightly in the —y-direction. Once
the electric field €, becomes as large as v, %, no net lateral force is experi-
enced by the holes as they drift along the bar. The establishment of the elec-
tric field €, is known as the Hall effect, and the resulting voltage V5 = éw
is called the Hall voltage. If we use the expression derived in Eq. (3-37) for
the drift velocity (using + g and p, for holes), the field €, becomes

J, 1
€ =R =RJB., Ry=— 349
Y ogpy o TR T gpy (3-49)

Thus the Hall field is proportional to the product of the current density
and the magnetic flux density. The proportionality constant R;; = (gp,) " is
called the Hall coefficient. A measurement of the Hall voltage for a known
current and magnetic field yields a value for the hole concentration p,,

1 _ ]x%z _ (Ix/Wt)%z _ Ix%z
qRy  q€,  q(Vag/w)  qtVag

Po =

Since all of the quantities in the right-hand side of Eq. (3-50) can be
measured, the Hall effect can be used to give quite accurate values for car-
rier concentration.

If a measurement of resistance R is made, the sample resistivity p can
be calculated:

Rwt _ Vep/l,

p(Q - cm) = T = L/Wt (3751)

Since the conductivity o = 1/p is given by gu,,p,, the mobility is simply
the ratio of the Hall coefficient and the resistivity:

o 1/p Ry
= =_—tr A 3-52
Yo " ape  q(1/qRy) b (3-52)

Measurements of the Hall coefficient and the resistivity over a range
of temperatures yield plots of majority carrier concentration and mobility
vs. temperature. Such measurements are extremely useful in the analysis of
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semiconductor materials. Although the discussion here has been related to
p-type material, similar results are obtained for n-type material. A negative
value of ¢ is used for electrons, and the Hall voltage V5 and Hall coefficient
Ry are negative. In fact, measurement of the sign of the Hall voltage is a com-
mon technique for determining if an unknown sample is p-type or n-type.

Referring to Fig. 3-25, consider a semiconductor bar with w = 0.1 mm,
t =10 pm,and L = Smm. For B = 10kG in the direction shown
(1kG = 107> Wb/cm?) and a current of 1 mA, we have V,; = —2mV
and Vp = 100 mV. Find the type, concentration, and mobility of the
majority carrier.

131

EXAMPLE 3-8

B, = 10* Wb/cm?
From the sign of V,;, we can see that the majority carriers are
electrons:
LR, (107%)(107
a(—Vis) 1.6 X 107°(107)(2 x 10°7)
R Vep/L 0.1/1073
T Ljwt L/wt  05/0.01 X 1073
1 1
pgny  (0.002)(1.6 X 1071%)(3.125 x 10'7)

=3.125 X 107 ¢cm™

ny =

= 0.002 Q - cm

y = 10,000 cm*(V - s)7!

SOLUTION

In this chapter we have discussed homogeneous semiconductors, without
variations in doping and without junctions between dissimilar materials. In
the following chapters we will be considering cases in which nonuniform
doping occurs in a given semiconductor, or junctions occur between different
semiconductors or a semiconductor and a metal. These cases are crucial to
the various types of electronic and optoelectronic devices made in semicon-
ductors. In anticipation of those discussions, an important concept should
be established here regarding the demands of equilibrium. That concept can
be summarized by noting that no discontinuity or gradient can arise in the
equilibrium Fermi level Ep.

To demonstrate this assertion, let us consider two materials in intimate
contact such that electrons can move between the two (Fig. 3-26). These may
be, for example, dissimilar semiconductors, n- and p-type regions, a metal and
a semiconductor, or simply two adjacent regions of a nonuniformly doped
semiconductor. Each material is described by a Fermi-Dirac distribution
function and some distribution of available energy states that electrons can
occupy.

3.5

INVARIANCE OF
THE FERMI LEVEL
AT EQUILIBRIUM
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Figure 3-26

Two materials in
intfimate contact at
equilibrium. Since
the net motion of
electrons is zero,
the equilibrium
Fermi level must
be constant
throughout.

Material 1
Density of states N;(E)

Fermi Distribution f;(E)

There is no current, and therefore no net charge transport, at ther-
mal equilibrium. There is also no net transfer of energy. Therefore, for each
energy E in Fig. 3-26 any transfer of electrons from material 1 to material 2
must be exactly balanced by the opposite transfer of electrons from 2 to 1. We
will let the density of states at energy E in material 1 be called N{(E) and in
material 2 we will call it N,(E). At energy E the rate of transfer of electrons
from 1 to 2 is proportional to the number of filled states at £ in material 1
times the number of empty states at £ in material 2:

rate from 1 to 2 o« N{(E)fi(E) + Ny(E)[1 — /(E)] (3-53)

where f(E) is the probability of a state being filled at E in each material,
that is, the Fermi-Dirac distribution function given by Eq. (3-10). Similarly,

rate from2to 1 « No(E)fL(E) - N(E)[1 — fi(E)] (3-54)

At equilibrium these must be equal:

N(E)A(E) * Ny(E)[1 = H(E)] = NAE)L(E) - Ny(E)[1 — fi(E)]  (3-55)
Rearranging terms, we have, at energy £,
NiiN, = NifiNofs = NofbNy — NofbNofy (3-56)
which results in
fi(E) = f(E), thatis, [1 + eEEV/ATTL = [1 4 E-EKTL (3.57)

Therefore, we conclude that Er; = Ep,. That is, there is no discontinuity
in the equilibrium Fermi level. More generally, we can state that the Fermi level
at equilibrium must be constant throughout materials in intimate contact. One
way of stating this is that no gradient exists in the Fermi level at equilibrium:

dEp _
dx

We will make considerable use of this result in the chapters to follow.

0 (3-58)
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3.1

3.3

3.5

3.7

In a diamond lattice, each Si atom (with four valence electrons) is surrounded
by four Si atoms that form four covalent bonds consisting of shared electron
pairs, thereby forming an octet of electrons in the valence shell. In zinc blende
structures such as GaAs, electrons are partly shared (covalent bonding) and
partly transferred from Ga to As (ionic bonding).

In crystals, electronic wavefunctions overlap to give various linear combina-
tions of atomic orbitals (LCAO). Bonding or symmetric combinations of the
wavefunctions of valence-shell electrons form (almost) continuous allowed
bands of energies in the (almost) filled valence band, separated by an energy
gap from higher energy states in an (almost) empty conduction band that cor-
respond to the antibonding or antisymmetric LCAOs. Empty electronic states
in the valence band can be considered to be positively charged carriers (holes),
while filled states in the conduction band are negatively charged (conduction)
electrons.

If the band gaps are large, we get insulators; if they are small (~1 eV), we get
semiconductors; and if they are zero, we get conductors (metals).

Simplified band diagrams plot electron energy in the conduction band (increas-
ing upward) as a function of position. The band edge corresponds to potential
energy, and the distance from the band edge gives the kinetic energy. Hole
energies increase downward in the valence band.

Carrier energies can also be plotted as a function of wavevector k (proportional
to velocity or momentum) to give (E, k) band structures, which can be direct
(conduction band minimum directly above valence band maximum) or indi-
rect. The curvature of the (E, k) is inversely proportional to the effective mass
m* of the carriers. The m* accounts for the interactions of the carriers with the
periodic crystal potential.

In a pure semiconductor, we have an intrinsic concentration of electrons (or
holes), n;, that result from thermal generation-recombination between the
valence and conduction band (or bond breaking). If we replace some Si atoms
(with four valence electrons) with donor impurities with five valence electrons,
they donate conduction electrons, n (=N3); similarly, acceptors create holes p.

The number of electrons, , is the integral with respect to energy from the bot-
tom to the top of the conduction band of the product of the available density
of states (DOS) and the Fermi—Dirac (FD) distribution function. For parabolic
band structures, we get a parabolic DOS.The FD function is the average occu-
pancy of an electronic state. The electron concentration # can also be expressed
as the product of an effective DOS at the band edge and the FD occupancy at
E,, and similarly for holes p. The np product in equilibrium is constant (1’,).

Electrons in a solid execute random Brownian motion with an average kinetic
energy related to the thermal energy k7. In an electric field, electrons drift
(on top of the random motion) with a velocity equal to mobility times field
in the ohmic regime and saturation velocity at high fields. The drift current is
proportional to carrier concentration times drift velocity. Negatively charged
electrons drift opposite to the electric field, and the current is opposite to the

SUMMARY
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3.9

motion. Positively charged holes drift in the direction of the electric field, and
the current goes in the same direction as the hole flow.

Carrier mobility is determined by scattering, caused by deviations from a peri-
odic lattice potential, such as lattice vibrations (phonons) or ionized impurities.
Carrier mobility and concentration can be obtained by the Hall effect and
resistivity measurements.

PROBLEMS

3.2

3.5

3.6

3.7

Find the approximate binding energy for gallium nitride (GaN) having the
following specifications: €, = 9.7, m,, =0.13 m,.

Calculate values for the Fermi function f(E) at 300 K and plot vs.energy in eV as
in Fig. 3-14. Choose Er = 1 eV and make the calculated points closer together
near the Fermi level to obtain a smooth curve. Notice that f(E) varies quite rap-
idly within a few kT of E. Show that the probability that a state AE above Eis
occupied is the same as the probability that the state AE below Eis empty.

(a) A Si substrate at room temperature is doped with 2.70 X 10'®/cm?® donor
atoms. Determine the electron and hole concentrations of the sample and
the type of the substrate. [Given: n,= 1.5 X 10'%cm?®, Nc = 6.0953 X 10'%/cm?,
Eg=11¢eV]

(b) If the above sample is overdoped with 5 X 10'%/cm® acceptor atoms, what
will be the new electron and hole concentrations for the substrate? What
will be the type of the substrate after acceptor doping?

Derive an expression for the total number of states in a semiconductor mate-
rial between E. and E. + kT, where E, is the conduction band edge, K is the
Boltzmann’s constant, and T is the temperature. Determine the DOS for Si at
room temperature.

Atroom temperature, an intrinsic A1As has 4X minima along <100> directions,
and the following data are available: Electronics mass for I" valley and X val-
ley are 0.15 m and 0.76 m,. The hole mass is 0.76 m,. At what temperature the
number of electrons in the I minima and X minima will be equal if the energy
separation between them is 0.40 eV? The band gap for AlAs is 2.23 eV.

Since the effective mass of electrons in a conduction band decreases with
increasing curvature of the band according to Eq. (3-3), comment on the
electron effective mass in the I' valley of GaAs compared with the indirect
X or L valleys. (See Fig. 3-10.) How is this effective mass difference reflected
in the electron mobility for GaAs and GaP shown in Appendix I1I? From
Fig. 3-10, what would you expect to happen to the conductivity of GaAs if I'
-valley electrons drifting in an electric field were suddenly promoted to the
L valley?

Calculate the band gap of Si from Eq. (3-23) and plot n; vs. 1000/ T (Fig. 3-17).
[Hint: The slope cannot be measured directly from a semilogarithmic plot; read
the values from two points on the plot and take the natural logarithm as needed
for the solution.]
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Consider a Ge crystal at room temperature doped with 5 X 10'%/cm? As atoms.
Find the equilibrium electron, the hole concentrations, and the position of the
Fermi level w.r.t intrinsic energy level (E;) and conduction energy band (E.).
Draw the energy band diagram also.

Ideally in a semiconductor, intrinsic energy level should be in the middle of the
band gap. Estimate the position of the intrinsic energy level (Ei) for intrinsic
Ge at 300 K, assuming the effective mass values for electrons and holes are
m, = 0.041 m, and m, = 0.28 m,, respectively.

A Ge sample is doped with 10'*/cm® As atoms/cm®. What will be the equi-
librium hole concentration? What is the relative position of Fermi level w.r.t
intrinsic energy level?

[Given: n; =2.5x10"/cm?]

A new semiconductor has N, = 10’cm ™ N, =5 x 10® cm ™, and E, =
2eV. If it is doped with 107 donors (fully ionized), calculate the electron,
hole, and intrinsic carrier concentrations at 627°C. Sketch the simplified band
diagram, showing the position of E.

3.12 (a) Show that the minimum conductivity of a semiconductor sample occurs

3.13

whenn, = n,Vw,/W,. [Hint: Begin with Eq. (3—-43) and apply Eq. (3-24).]
(b) What is the expression for the minimum conductivity o ,;,?
(c) Calculate o, for Si at 300 K and compare with the intrinsic conductivity.

A 2 cm long piece of Si with cross-sectional area of 0.1 cm?® is doped with
donors at 10" cm ™, and has a resistance of 90 ohms. The saturation velocity of
electrons in Si is 107 cm/s for fields above 10° V/cm. Calculate the electron drift
velocity, if we apply a voltage of 100 V across the piece. What is the current
through the piece if we apply a voltage of 10°V across it?

In an n-type semiconductor rectangular bar, if the length of the bar becomes
four times of the original length and doping is decreased by half of its original
doping, then how it will affect the conductivity and current density through the
bar if the applied voltage remains the same?

Predict the effect on mobility and resistivity of Si crystal at room tempera-
ture if every millionth of Si atom is replaced by an atom of indium (In).
Given, the concentration of Si atoms is 5 X 102%/m?, the intrinsic carrier con-
centration is 1.5 X 10'%cm?, the intrinsic conductivity of Si is 0.00044 S/m, the
intrinsic resistivity of Siis R = 2300 Q.m, and the mobility of electrons and
holes are 0.135 m?/V-sec and 0.048 m*/V-sec, respectively.

For a Si bar having a length of 4 um, doped n-type at 10"7/cm?, calculate the
current for an applied voltage of 2 V having a cross sectional area of 0.01 cm?. If
the voltage is now raised at 100 V, what will be the change in current? Electron
and hole mobilities are 1350 cm?/V-sec and 400 cm?/ V-sec for low electric field.
For higher field saturation, the velocity for electron is Vs = 107 cm/sec.
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3.17

A semiconductor has a band gap of 1 eV, effective density of states,
N, =10"ecm 3, N, = 4 X 10”cm™, electron and hole mobilities of 4000
and 2500 cm*/V-s, respectively. It is subjected to the following potentials at
the various locations as follows (assume linear variation of potentials between
locations):

Point A at x = O microns,V = 0V

Point B at x = 2 microns, V = -2V

Point C at 4 microns,V = +4V

Point D is at 8 microns; electric field is zero between C and D.

Sketch the simplified band diagram, properly labeling the positions, energies,
and directions of electric fields.

If the electron concentration at location B is 10" cm™, and assuming things

are close to equilibrium, what is the hole concentration there? If an electron
at the conduction band edge at B goes toward C, how long does it take to get
there? If there is negligible scattering at low electric fields, how long does it
take to go from C to D?

Sketch, with proper labeling of energies and distances, the simplified band
diagram of a semiconductor with a band gap of 2 eV which is subjected to
the following electrostatic potential profile: 0 V for x = 0 to 1 wm; linearly
increasing from 0 to 1.5 V between 1 wm and 4 pm; constant potential after
that from x = 4 to 5 wm. We launch an electron to the right, at x = 0 with a
kinetic energy of 0.5 eV. Assuming there is no scattering, what is its kinetic
energy at x = 2 wm? If the effective mass of this electron is 0.5 m, how long
does it take the electron to travel from x = 4 to 5 wm? If the donor density in
this semiconductor is 107 cm™, what is the electron drift current density at
x = 4.5 pm?

3.19 (a) Sketch and label the simplified band diagram of a semiconductor with a

3.20

3.21

band gap of 1.5 eV subjected to the following: From x = 0 to 2 um, the
voltage is constant. From x = 2 um to 4 um, there is an electric field of
2 V/pm pointing to the right. Then from x = 4 pm to 8 m, the voltage
increases by 3 V.

(b) A semiconductor has a electron band structure E(k) = (4k*> + 5)eV,
where & has units of A~ (1 A = 107'"m). Calculate the effective mass of
the electrons. Why is the effective mass different from the actual electron
mass of 9.1 X 107! kg?

A doped Si sample A of thickness 3 mm shows a Hall voltage of V,=3 mV for
current density J =300 A/m?, under a magnetic field of B, =1 Weber/m? Find
the type of the semiconductor and doping concentration.

A semiconductor bar of length 8 um and cross-sectional area 2 wm? is uni-
formly doped with donors with a much higher concentration than the intrin-
sic concentration (10" cm™) such that ionized impurity scattering causes its
majority carrier mobility to be a function of doping N,(cm )
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w = 800/V[N,/(10* cm™3)] cm*/V-s

If the electron drift current for an applied voltage of 160 V is 10 mA, calcu-
late the doping concentration in the bar. If the minority carrier mobility is
500 cm?/V-s, and its saturation velocity is 10° cm/s for fields above 100 kV/em
calculate the hole drift current. What are the electron and hole diffusion cur-
rents in the middle of the bar?

Use Eq. (3-45) to calculate and plot the mobility vs. temperature W(7) from
10 K to 500 K for Si doped with N, = 10',10'°, and 10'® donors cm™=. Consider
the mobility to be determined by impurity and phonon (lattice) scattering.
Impurity scattering limited mobility can be described by

€l T3/2

W = 329 x 105
Z

1 + 2

i(m,/mg)? In(1 + 2) —

where

z = 1.3 X 10%,7%(m;,/m)(N,) !
Assume that the ionized impurity concentration N} is equal to N, at all tem-
peratures. The conductivity effective mass m,, for Si is 0.26 m,,. Acoustic phonon
(lattice) scattering limited mobility can be described by

Hac = L18 X 107 ¢y(m,,/m) T (E )

where the stiffness (c;) is given by

c; = 1.9 X 10'2 dyne cm 2 for Si
and the conduction band acoustic deformation potential (E,¢) is

E e = 9.5¢eV for Si

Rework Prob. 3.22 considering carrier freeze-out onto donors at low 7. That is,
consider
Na

+ = —————————————————————
N = Y exp(Bl/KT)

as the ionized impurity concentration. Consider the donor ionization energy
(E,) to be 45 meV for Si.

Consider a Si sample kept at room temperature having a band gap E, = 1.12
eV.

(a) If the Fermi level E is located exactly at the middle of the band gap for
this sample, then what will be the probability of finding an electron at E =
Ec+2kT?

(b) If the Fermi level Ej is located such that E. = E, then what will be the
probability of finding an electron at £E=Ey, + kT?
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3.25 In soldering wires to a sample such as that shown in Fig. 3-25, it is difficult
to align the Hall probes A and B precisely. If B is displaced slightly down the
length of the bar from A, an erroneous Hall voltage results. Show that the true
Hall voltage V,; can be obtained from two measurements of V5, with the mag-
netic field first in the +z-direction and then in the —z-direction.

3.26 Consider a Si bar with width of 0.02 cm, thickness of 8 ym, and length of 0.6 cm.
Due to Hall measurement, magnetic field generated at z-direction is 10-5 Wb/cm?
and a current of 0.8 mA. If the voltage at the two end is +1 mV and V-, =50 mV,
then find the type, concentration, and mobility of the majority carriers.
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SELF QUIZ Question 1

(a) The following three diagrams show three different energy bands of some hypo-
thetical crystalline materials (energy varies vertically). The only difference
between the three materials is the assumed Fermi level energy E;. Characterize
each material as a metal, an insulator, or a semiconductor.

(b) Assuming you can see through one and only one of the materials of part
(a) above, which one would it most likely be? Material 1 / Material 2 /
Material 3
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Material 1 Material 2 Material 3
band 3 band 3 band 3
Ep
band 2 band 2 band 2
Ep
Ep
band 1 band 1 band 1
Question 2

Consider the following conduction band energy E vs. wavevector k, dispersion relation.

(a) Which energy valley has the greater effective mass in the x-direction m, (circle
one)? I'-valley / X-valley

(b) Consider two electrons, one each located at the positions of the heavy crosses.
Which has the greater velocity magnitude (circle one)? The one in the I'-valley /
The one in the X-valley

X-valley -

["-valley
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Question 3

These questions refer to the band structures of Si and GaAs shown in Fig. 3-10.

(a)

(®)

(©)

(d)

Which material appears to have the lowest (conduction band) electron effective
mass, Si or GaAs?

Which of these would you expect to produce photons (light) more efficiently
through electron-hole recombination?

Consistent with your answer to part (b) and making use of Appendix III, what
would you expect the energy of the emitted photons to be? What would be their
wavelength in um? Would these be visible, infrared, or ultraviolet?

How many equivalent conduction band minima do we have for Si? GaAs?

Question 4

Refer to Fig. 3-10, which shows the E vs. k dispersion relations for gallium arse-
nide (GaAs) and for silicon (Si) along the [111] and [100] directions, showing both
valence and conduction bands.

(a)

(®)

Neglecting differences in electron scattering rates in the two materials, would
you expect Si or GaAs to have the greatest electron mobility w,?

If a constant force were applied in the [100] direction for a short period of time
on an electron initially located at the conduction band minimum of each semi-
conductor and if scattering were neglected, would the magnitude of change in
k in Si be greater, equal to, or smaller than the magnitude of the change in k in
GaAs for the same force F?

greater / equal / smaller

Question 5

(a)

The equilibrium band diagram for a doped direct gap semiconductor is shown
below. Is it n-type, p-type, or unknown? Circle one below.

n-type / p-type / not enough information provided

Donorlevel Ej — =———————————— Conduction band edge E,

Intrinsic Fermi level E;

Acceptor level E, Fermi level E;

Valence band edge E,
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(b) Based on the band diagram above (E; is in the middle of the gap), would you

(©)

expect that the conduction band density-of-states effective mass is greater than,
equal to, or smaller than the valence band effective mass? Circle one:

Greater than / equal / smaller than
What, if any, of the following conditions by themselves could lead to the above
band diagram? Circle each correct answer.

(a) very high temperature
(b) very high acceptor doping
(c) very low acceptor doping

Question 6

A hypothetical semiconductor has an intrinsic carrier concentration of 1.0 X 10'%cm?
at 300 K, it has conduction and valence band effective densities of states N.and N,
both equal to 10"/cm?.

(a) Whatis the band gap E,?

(b) If the semiconductor is doped with N; = 1 X 10'® donors/cm®, what are the
equilibrium electron and hole concentrations at 300 K?

(c) If the same piece of semiconductor, already having N, = 1 X 10'® donors/cm?,
is also doped with N, = 2 X 10'® acceptors/cm®, what are the new equilibrium
electron and hole concentrations at 300 K?

(d) Consistent with your answer to part (c), what is the Fermi level position with
respect to the intrinsic Fermi level, E; — E;?

Question 7

What is the difference between density of states and effective density of states, and
why is the latter such a useful concept?

Question 8

(a) Does mobility have any meaning at very high field? Why?

(b) How do you measure mobility and carrier concentration?
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Chapter 4
Excess Carriers in Semiconductors

OBJECTIVES

1. Understand how photons interact with direct and indirect band gap
semiconductors

2. Understand generation—recombination of excess carriers, possibly
through trap sites

3. Introduce quasi-Fermi levels in nonequilibrium

4. Calculate diffusion currents from carrier concentration gradients and
diffusivity

5. Use the continuity equation to study time dependence of carrier
concentrations

Most semiconductor devices operate by the creation of charge carriers
in excess of the thermal equilibrium values. These excess carriers can be
created by optical' excitation or electron bombardment, or as we shall
see in Chapter 5, they can be injected across a forward-biased p-n junc-
tion. However the excess carriers arise, they can dominate the conduction
processes in the semiconductor material. In this chapter we shall investigate
the creation of excess carriers by optical absorption and the resulting prop-
erties of photoluminescence and photoconductivity. We shall study more
closely the mechanism of electron—hole pair recombination and the effects of
carrier trapping. Finally, we shall discuss the diffusion of excess carriers due
to a carrier gradient, which serves as a basic mechanism of current conduc-
tion along with the mechanism of drift in an electric field.
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4.1
OPTICAL
ABSORPTION!

An important technique for measuring the band gap energy of a semiconduc-
tor is the absorption of incident photons by the material. In this experiment
photons of selected wavelengths are directed at the sample, and relative
transmission of the various photons is observed. Since photons with energies
greater than the band gap energy are absorbed while photons with energies

lIn this context the word “optical” does not necessarily imply that the photons absorbed are in the visible
part of the spectrum. Many semiconductors absorb photons in the infrared region, but this is included in
the term “optical absorption.”
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g
hv >Eg
Y E

less than the band gap are transmitted, this experiment gives an accurate
measure of the band gap energy.

It is apparent that a photon with energy 4iv = E, can be absorbed in
a semiconductor (Fig. 4-1). Since the valence band contains many electrons
and the conduction band has many empty states into which the electrons
may be excited, the probability of photon absorption is high. As Fig. 4-1 indi-
cates, an electron excited to the conduction band by optical absorption may
initially have more energy than is common for conduction band electrons
(almost all electrons are near E. unless the sample is very heavily doped).
Thus the excited electron loses energy to the lattice in scattering events until
its velocity reaches the thermal equilibrium velocity of other conduction band
electrons. The electron and hole created by this absorption process are excess
carriers; since they are out of balance with their environment, they must even-
tually recombine. While the excess carriers exist in their respective bands,
however, they are free to contribute to the conductivity of the material.

A photon with energy less than E|, is unable to excite an electron from
the valence band to the conduction band. Thus in a pure semiconductor,
there is negligible absorption of photons with Ay < E|,. This explains why
some materials are transparent in certain wavelength ranges. We are able to
“see through” certain insulators, such as a good NaCl crystal, because a large
energy gap containing no electron states exists in the material. If the band
gap is about 2 eV wide, only long wavelengths (infrared) and the red part of
the visible spectrum are transmitted; on the other hand, a band gap of about
3 eV allows infrared and the entire visible spectrum to be transmitted.

If a beam of photons with hv > E|, falls on a semiconductor, there will
be some predictable amount of absorption, determined by the properties of
the material. We would expect the ratio of transmitted to incident light inten-
sity to depend on the photon wavelength and the thickness of the sample. To
calculate this dependence, let us assume that a photon beam of intensity
I, (photons /cm?*-s) is directed at a sample of thickness / (Fig. 4-2). The beam
contains only photons of wavelength A, selected by a monochromator. As the
beam passes through the sample, its intensity at a distance x from the surface
can be calculated by considering the probability of absorption within any
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Figure 4-1
Optical absorption
of a photon with
hv > Eg: (a) An
EHP is created
during photon
absorption; (b) the
excited electron
gives up energy
to the lattice by
scattering events;
(c) the electron
recombines with

a hole in the
valence band.
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Figure 4-2
Optical absorption
experiment.

Sample

A
4
1

—f | dx

Detector

Monochromator \ -
r f\/\/\/\/\/\/W\/\/\/L» I f\/\/\/\/\/\/\/\/\/\/\/\-»

increment dx. Since a photon which has survived to x without absorption has

no memory of how far it has traveled, its probability of absorption in any dx

is constant. Thus the degradation of the intensity, dI(x)/dx, is proportional
to the intensity remaining at x:

dl(x)
L = al(x) (4-1)

The solution to this equation is
I(x) = Ije™ (4-2)
and the intensity of light transmitted through the sample thickness / is
I =Ie™ (4-3)

The coefficient « is called the absorption coefficient and has units
of cm ™!, This coefficient will of course vary with the photon wavelength
and with the material. In a typical plot of « vs. wavelength (Fig. 4-3), there
is negligible absorption at long wavelengths (Av small) and considerable
absorption of photons with energies larger than E,. According to Eq. (2-2),
the relation between photon energy and wavelength is E = hc/A. If E is
given in electron volts and A in micrometers, this becomes E = 1.24/A.

Figure 4-4 indicates the band gap energies of some of the common
semiconductors, relative to the visible, infrared, and ultraviolet portions of
the spectrum. We observe that GaAs, Si, Ge, and InSb lie outside the visible
region, in the infrared. Other semiconductors, such as GaP and CdS, have
band gaps wide enough to pass photons in the visible range. It is important
to note here that a semiconductor absorbs photons with energies equal to
the band gap, or larger. Thus Si absorbs not only band gap light (~1 pm) but
also shorter wavelengths, including those in the visible part of the spectrum.
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Figure 4-3
Dependence of
optical absorption
coefficient « for a
semiconductor on
the wavelength of
incident light.

Figure 4-4

Band gaps of
some common
semiconductors
relative to the
optical spectrum.

When electron-hole pairs are generated in a semiconductor, or when carriers
are excited into higher impurity levels from which they fall to their equilib-
rium states, light can be given off by the material. Many of the semiconductors
are well suited for light emission, particularly the compound semiconduc-
tors with direct band gaps. The general property of light emission is called
Iluminescence.? This overall category can be subdivided according to the
excitation mechanism: If carriers are excited by photon absorption, the
radiation resulting from the recombination of the excited carriers is called
photoluminescence; if the excited carriers are created by high-energy electron
bombardment of the material, the mechanism is called cathodoluminescence;
if the excitation occurs by the introduction of current into the sample, the
resulting luminescence is called electroluminescence. Other types of excitation
are possible, but these three are the most important for device applications.

The emission processes considered here should not be confused with radiation due to incandescence
which occurs in heated materials. The various luminescent mechanisms can be considered “cold”
processes as compared to the “hot” process of incandescence, which increases with temperature. In fact,
most luminescent processes become more efficient as the temperature is lowered.

4.2
LUMINESCENCE
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Figure 4-5
Excitation and
recombination
mechanisms in

photolumine-
scence with a
trapping level for
electrons.

4.2.1 Photoluminescence

The simplest example of light emission from a semiconductor occurs for
direct excitation and recombination of an electron-hole pair (EHP), as
depicted in Fig. 3-5a. If the recombination occurs directly rather than via a
defect level, band gap light is given off in the process. For steady state excita-
tion, the recombination of EHPs occurs at the same rate as the generation,
and one photon is emitted for each photon absorbed. Direct recombination
is a fast process; the mean lifetime of the EHP is usually on the order of
10785 or less. Thus the emission of photons stops within approximately 10~®s
after the excitation is turned off. Such fast luminescent processes are often
referred to as fluorescence. In some materials, however, emission continues
for periods up to seconds or minutes after the excitation is removed. These
slow processes are called phosphorescence, and the materials are called
phosphors. An example of a slow process is shown in Fig. 4-5. This mate-
rial contains a defect level (perhaps due to an impurity) in the band gap
which has a strong tendency to temporarily capture (frap) electrons from
the conduction band. The events depicted in the figure are as follows: (a) An
incoming photon with v, > E, is absorbed, creating an EHP; (b) the excited
electron gives up energy to the lattice by scattering until it nears the bottom
of the conduction band; (c) the electron is trapped by the impurity level E,
and remains trapped until it can be thermally reexcited to the conduction
band (d); (e) finally direct recombination occurs as the electron falls to an
empty state in the valence band, giving off a photon (4v,) of approximately
the band gap energy. The delay time between excitation and recombination
can be relatively long if the probability of thermal reexcitation from the trap
(d) is small. Even longer delay times result if the electron is retrapped several
times before recombination. If the trapping probability is greater than the
probability of recombination, an electron may make several trips between
the trap and the conduction band before recombination finally occurs. In
such material the emission of phosphorescent light persists for a relatively
long time after the excitation is removed.

Y )
(d)
E

¢
(a) ()
E, hvy > hv,
l“’1/\/\/\/\/\/\/\/\> AN L1,
(e)
Y E
0 00 oceo0coccoce '
(X} 000000000000
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The color of light emitted by a phosphor such as ZnS depends primar-
ily on the impurities present, since many radiative transitions involve impu-
rity levels within the band gap. This selection of colors is particularly useful
in the fabrication of a color television screen.

One of the most common examples of photoluminescence is the fluo-
rescent lamp. Typically such a lamp is composed of a glass tube filled with
gas (e.g., a mixture of argon and mercury), with a fluorescent coating on
the inside of the tube. When an electric discharge is induced between elec-
trodes in the tube, the excited atoms of the gas emit photons, largely in the
visible and ultraviolet regions of the spectrum. This light is absorbed by the
luminescent coating, and the visible photons are emitted. The efficiency of
such a lamp is considerably better than that of an incandescent bulb, and the
wavelength mixture in light given off can be adjusted by proper selection of
the fluorescent material.

A 0.46-pum-thick sample of GaAs is illuminated with monochromatic light
of hv = 2eV.The absorption coefficient ais 5 X 10*cm™!. The power inci-
dent on the sample is 10 mW.

(a) Find the total energy absorbed by the sample per second (J/s).

(b) Find the rate of excess thermal energy given up by the electrons
to the lattice before recombination (J/s).

(c) Find the number of photons per second given off from recombina-
tion events, assuming perfect quantum efficiency.

EXAMPLE 4-1
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(a) From Eq. (4-3),
I, = Ie ™ = 1072 exp(—5 X 10* X 0.46 X 107
=102 =10"W

E

MMV hy = 1.43 eV

Y
0000000 0000 0000000000000 000 EV
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000

SOLUTION

Figure 4-6
Excitation and
band-to-band
recombination
leading to
photolumine-
scence.
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Thus the absorbed power is
10-1=9mW =9 X 107 J/s
(b) The fraction of each photon energy unit which is converted to heat is

2 —143
- 0.285
Thus the amount of energy converted to heat per second is
0.285 X 9 X 107 = 2.57 X 107 J/s
(c) Assuming one emitted photon for each photon absorbed (perfect
quantum efficiency), we have

9 X 1073 J/s
1.6 X 107 J/eV X 2 eV/photon

= 2.81 X 10" photons/s

Alternative solution: Recombination radiation accounts for 9 — 2.57 =
6.43 mW at 1.43 eV/photon.

6.43 X 1073
1.6 X 107" x 1.43

= 2.81 X 10" photons/s

4.2.2 Electroluminescence

There are many ways by which electrical energy can be used to generate
photon emission in a solid. In LEDs an electric current causes the injection
of minority carriers into regions of the crystal where they can recombine
with majority carriers, resulting in the emission of recombination radia-
tion. This important effect (injection electroluminescence) will be discussed
in Chapter 8 in terms of p-n junction theory.

The first electroluminescent effect to be observed was the emission of
photons by certain phosphors in an alternating electric field (the Destriau
effect). In this device, a phosphor powder such as ZnS is held in a binder
material (often a plastic) of a high dielectric constant. When an a-c electric
field is applied, light is given off by the phosphor. Such cells can be useful as
lighting panels, although their efficiency has thus far been too low for most
applications and their reliability is poor.

4.3 When excess electrons and holes are created in a semiconductor, there is

CARRIER LIFETIME  a corresponding increase in the conductivity of the sample as indicated by
AND PHOTO-  Eq. (3-43). If the excess carriers arise from optical luminescence, the result-
CONDUCTIVITY  ing increase in conductivity is called photoconductivity. This is an important
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effect, with useful applications in the analysis of semiconductor materials
and in the operation of several types of devices. In this section we shall
examine the mechanisms by which excess electrons and holes recombine
and apply the recombination kinetics to the analysis of photoconductive
devices. However, the importance of recombination is not limited to cases
in which the excess carriers are created optically. In fact, virtually every
semiconductor device depends in some way on the recombination of excess
electrons and holes. Therefore, the concepts developed in this section will
be used extensively in the analyses of diodes, transistors, lasers, and other
devices in later chapters.

4.3.1 Direct Recombination of Electrons and Holes

It was pointed out in Section 3.1.4 that electrons in the conduction band
of a semiconductor may make transitions to the valence band (i.e., recom-
bine with holes in the valence band) either directly or indirectly. In direct
recombination, an excess population of electrons and holes decays by elec-
trons falling from the conduction band to empty states (holes) in the valence
band. Energy lost by an electron in making the transition is given up as a
photon. Direct recombination occurs spontaneously; that is, the probability
that an electron and a hole will recombine is constant in time. As in the case
of carrier scattering, this constant probability leads us to expect an exponen-
tial solution for the decay of the excess carriers. In this case the rate of decay
of electrons at any time ¢ is proportional to the number of electrons remain-
ing at ¢ and the number of holes, with some constant of proportionality for
recombination, «,. The net rate of change in the conduction band electron
concentration is the thermal generation rate a,n? from Eq. (3-7) minus the
recombination rate

dn(t)
dr

arnl2 - a,n(t)p(t) (474)

Let us assume the excess electron—hole population is created at t = 0,
for example by a short flash of light, and the initial excess electron and hole
concentrations An and Ap are equal. Then as the electrons and holes recom-
bine in pairs, the instantaneous concentrations of excess carriers An(t) and
Ap(t) are also equal. Thus we can write the total concentrations of Eq. (4—4)
in terms of the equilibrium values n, and p, and the excess carrier concentra-
tions 6n(t) = 8p(t). Using Eq. (3-24) we have

dén(t)
dt

= a,n; — a,[ny + dn()][py + 8p(1)]
= —a,[(ny + po)dn(r) + dn*(1)] (4-5)

3We will use 8n(t) and 8p(t) fo mean instantaneous excess carrier concentrations, and An, Ap for their
values at t= 0. Later we will use similar symbolism for spatial distributions, such as 8n(x) and An(x = 0).
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EXAMPLE 4-2

This nonlinear equation would be difficult to solve in its pres-
ent form. Fortunately, it can be simplified for the case of low-level injec-
tion. If the excess carrier concentrations are small, we can neglect the An?
term. Furthermore, if the material is extrinsic, we can usually neglect the term
representing the equilibrium minority carriers. For example, if the material
is p-type (py => ny), Eq. (4-5) becomes

don(t)
S = —apdn(0) (4-6)

The solution to this equation is an exponential decay from the original excess
carrier concentration An:

on(f) = Ane P! = Ape /™ (4-7)

Excess electrons in a p-type semiconductor recombine with a decay
constant 7, = (a,p,) !, called the recombination lifetime. Since the calcula-
tion is made in terms of the minority carriers, 7, is often called the minority
carrier lifetime. The decay of excess holes in n-type material occurs with
7, = (a,n,)"".In the case of direct recombination, the excess majority carri-
ers decay at exactly the same rate as the minority carriers.

There is a large percentage change in the minority carrier electron
concentration in Example 4-2 and a small percentage change in the major-
ity hole concentration. Basically, the approximations of extrinsic material
and low-level injection allow us to represent n(f) in Eq. (4-4) by the excess
concentration dn(t) and p(¢) by the equilibrium value p,,. Figure 4-7 indicates
that this is a good approximation for the example. A more general expression
for the carrier lifetime is

1
T, = ——— 4-8
ar(n() + p()) ( )

This expression is valid for n- or p-type material if the injection level
is low.

A numerical example may be helpful in visualizing the approximations
made in the analysis of direct recombination. Let us assume a sample
of GaAs is doped with 10" acceptors/cm’. The intrinsic carrier concen-
tration of GaAs is approximately 10°cm™%; thus the minority electron
concentration is ny = n?/p, = 107> cm . Certainly the approximation
of py=> n, is valid in this case. Now if 10"* EHP/cm® are created at t = 0,
we can calculate the decay of these carriers in time. The approximation of
on << p, is reasonable, as Fig. 4-7 indicates. This figure shows the decay
in time of the excess populations for a carrier recombination lifetime of
T, =1, = 107"s.
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Ap +p,=11x105cm 3
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4.3.2 Indirect Recombination; Trapping

In column IV semiconductors and in certain compounds, the probability of
direct electron-hole recombination is very small (Appendix I1I). There is
some band gap light given off by materials such as Si and Ge during recom-
bination, but this radiation is very weak and may be detected only by sensi-
tive equipment. The vast majority of the recombination events in indirect
materials occur via recombination levels within the band gap, and the result-
ing energy loss by recombining electrons is usually given up to the lattice as
heat rather than by the emission of photons. Any impurity or lattice defect
can serve as a recombination center if it is capable of receiving a carrier of
one type and subsequently capturing the opposite type of carrier, thereby
annihilating the pair. For example, Fig. 4-8 illustrates a recombination level
E, which is below E at equilibrium and therefore is substantially filled with
electrons. When excess electrons and holes are created in this material, each
EHP recombines at E, in two steps: (a) hole capture and (b) electron capture.

151

Figure 4-7

Decay of excess
electrons and holes
by recombination,
for An = Ap =
0.1 Po. Wlfh

no negligible,

and = 10 ns
(Example 4-2).
The exponential
decay of &n(t)

is linear on this
semilogarithmic

graph.
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Figure 4-8
Capture processes
at a recombination

level: (a) hole
capture at a filled
recombination
center; (b) electron
capture at an
empty center.
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Since the recombination centers in Fig. 4-8 are filled at equilibrium,
the first event in the recombination process is hole capture. It is important
to note that this event is equivalent to an electron at E, falling to the valence
band, leaving behind an empty state in the recombination level. Thus in hole
capture, energy is given up as heat to the lattice. Similarly, energy is given
up when a conduction band electron subsequently falls to the empty state
in E,. When both of these events have occurred, the recombination center is
back to its original state (filled with an electron), but an EHP is missing. Thus
one EHP recombination has taken place, and the center is ready to partici-
pate in another recombination event by capturing a hole.

The carrier lifetime resulting from indirect recombination is some-
what more complicated than is the case for direct recombination, since it is
necessary to account for unequal times required for capturing each type of
carrier. In particular, recombination is often delayed by the tendency for a
captured carrier to be thermally reexcited to its original band before capture of
the opposite type of carrier can occur (Section 4.2.1). For example, if electron
capture (b) does not follow immediately after hole capture (a) in Fig. 4-8, the
hole may be thermally reexcited to the valence band. Energy is required for
this process, which is equivalent to a valence band electron being raised to the
empty state in the recombination level. This process delays the recombination,
since the hole must be captured again before recombination can be completed.

When a carrier is trapped temporarily at a center and then is reexcited
without recombination taking place, the process is often called temporary
trapping. Although the nomenclature varies somewhat, it is common to refer
to an impurity or defect center as a trapping center (or simply trap) if, after
capture of one type of carrier, the most probable next event is reexcitation. If
the most probable next event is capture of the opposite type of carrier, the
center is predominately a recombination center. The recombination can be
slow or fast, depending on the average time the first carrier is held before
the second carrier is captured. In general, trapping levels located deep in
the band gap are slower in releasing trapped carriers than are the levels
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located near one of the bands. This results from the fact that more energy
is required, for example, to reexcite a trapped electron from a center near
the middle of the gap to the conduction band than is required to reexcite an
electron from a level closer to the conduction band.

As an example of impurity levels in semiconductors, Fig. 4-9* shows
the energy level positions of various impurities in Si. In this diagram a super-
script indicates whether the impurity is positive (donor) or negative (accep-
tor) when ionized. Some impurities introduce multiple levels in the band gap;
for example, Zn introduces a level (Zn ™) located 0.31 eV above the valence
band and a second level (Zn~) near the middle of the gap. Each Zn impurity
atom is capable of accepting two electrons from the semiconductor, one in
the lower level and then one in the upper level.

The effects of recombination and trapping can be measured by a photo-
conductive decay experiment. As Fig. 4-7 shows, a population of excess elec-
trons and holes disappears with a decay constant characteristic of the particular
recombination process. The conductivity of the sample during the decay is

a(t) = q[n(Ow, + p(Ow,] (4-9)

Therefore, the time dependence of the carrier concentrations can be moni-
tored by recording the sample resistance as a function of time. A typical

Conduction band

‘Li* (0.033)  -P* (0.044) -As’ (0.049) -Sb* (0.039)
0.1
0.2 $ST(018)
0.3
Ni= (035 ST (037
0.4 (0.35) (©0:37)
05 Mn* (0.53) Aum(054)
- - -Zn~ (0.55) - - -— &
05 .Cu™ (0.49)
0.4
- Au* (0.35)
03 .Zn~ (0.31)
B .Cu* (0.24)
02 NI (022)
“In" (0.16)
0.1 )
| LB~ (0045) *Ga~ (0.065) - Al™ (0.057) -

Valence band

“References: S. M. Sze and J. C. Irvin, “Resistivity, Mobility, and Impurity Levels in GaAs, Ge and Si at
300 K,” Solid State Electronics, vol. 11, pp. 599-602 (June 1968); E. Schibli and A. G. Milnes, “Deep
Impurities in Silicon,” Materials Science and Engineering, vol. 2, pp. 173-180 (1967).
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Figure 4-9
Energy levels

of impurities in
Si. The energies
are measured
from the nearest
band edge (E, or
EJ); donor levels
are designated
by a plus sign
and acceptors by
a minus sign.
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Experimental
arrangement for
photoconductive
decay measure-

ments, and a typi-
cal oscilloscope

Chapter 4
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experimental arrangement is shown schematically in Fig. 4-10. A source of
short pulses of light is required, along with an oscilloscope for displaying
the sample voltage as the resistance varies. Microsecond light pulses can be
obtained by periodically discharging a capacitor through a flash tube con-
taining a gas such as xenon. For shorter pulses, special techniques such as the
use of a pulsed laser must be used.

4.3.3 Steady State Carrier Generation; Quasi-Fermi Levels

In the previous discussion we emphasized the transient decay of an excess
EHP population. However, the various recombination mechanisms are also
important in a sample at thermal equilibrium or with a steady state EHP
generation—-recombination (G-R) balance.’ For example, a semiconductor
at equilibrium experiences thermal generation of EHPs at a rate g(7) = g;
described by Eq. (3-7). This generation is balanced by the recombination rate
so that the equilibrium concentrations of carriers n, and p, are maintained:

8(T) = a,n} = a,nyp, (4-10)

This equilibrium rate balance can include generation from defect centers as
well as band-to-band generation.

If a steady light is shone on the sample, an optical generation rate g,
will be added to the thermal generation, and the carrier concentrations n and
p will increase to new steady state values. We can write the balance between
generation and recombination in terms of the equilibrium carrier concentra-
tions and the departures from equilibrium &z and dp:

g(T) + gop = onp = ar(nO + 6”)(p0 + 8p) (471 1)

For steady state recombination and no trapping, An = Ap; thus
Eq. (4-11) becomes

g(T) + 8op = @,Ngpy T a,[(ny + py)dn + 3”2] (4-12)

5The term equilibrium refers to a condition of no external excitation except for temperature, and no net
motion of charge (e.g., a sample at a constant temperature, in the dark, with no fields applied). Steady
state refers to a non-equilibrium condition in which all processes are constant and are balanced by
opposing processes (e.g., a sample with a constant current or a constant optical generation of EHPs just
balanced by recombination).
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The term «, 1y p, is just equal to the thermal generation rate g(7). Thus,
neglecting the 8n* term for low-level excitation, we can rewrite Eq. (4-12) as

on
8op — ar(nO + pO)Bn = T (4713)

n

The excess carrier concentration can be written as
on = 0p = gupTy (4-14)

More general expressions are given in Eq. (4-16), which allow for the
case T, # T,, when trapping is present.

As a numerical example, let us assume that 10> EHP/cm® are created ~ EXAMPLE 4-3
optically every microsecond in a Si sample with n, = 10" cm™ and
T, = T, = 2 us. The steady state excess electron (or hole) concentration
is then 2 X 10" cm from Eq. (4-14). While the percentage change in the
majority electron concentration is small, the minority carrier concentra-

tion changes from
po = n?/ny = (225 X 10%°)/10" = 2.25 X 106 cm™  (equilibrium)
to
p=2x10%cm™ (steady state)

Note that the equilibrium equation ngp, = n? cannot be used with the
subscripts removed; that is, np # n; when excess carriers are present.
The steady state electron concentration is

n=ny+6n=12x 10" = (1.5 X 10'0)eF=E)/00259

where k7T = 0.0259 eV at room temperature. Thus the electron quasi-
Fermi level position F,, — E; is found from

F, — E;, = 0.0259 In(8 X 10°) = 0.233 eV

and F,, lies 0.233 eV above the intrinsic level. By a similar calculation, the
hole quasi-Fermi level lies 0.186 eV below E; (Fig. 4-11). In this example,
the equilibrium Fermi level is 0.0259 In(6.67 X 10°) = 0.228 ¢V above
the intrinsic level.

Ec Figure 4-11
Quasi-Fermi levels
******* Fp = EF F, and F, for a
I 0.233 eV Si sample with
np= 10" cm>3,

(Example 4-4).

E,
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It is often desirable to refer to the steady state electron and hole con-
centrations in terms of Fermi levels, which can be included in band diagrams
for various devices. The Fermi level £ used in Eq. (3-25) is meaningful only
when no excess carriers are present. However, we can write expressions for
the steady state concentrations in the same form as the equilibrium expres-
sions by defining separate quasi-Fermi levels F, and F), for electrons and
holes. The resulting carrier concentration equations

n e Fi EVKT

= nelEFIKT

" (4-15)

can be considered as defining relations for the quasi-Fermi levels.®

The quasi-Fermi levels of Fig. 4-11 illustrate dramatically the deviation
from equilibrium caused by the optical excitation; the steady state F,, is only
slightly above the equilibrium Ey, whereas F), is greatly displaced below
Er. From the figure it is obvious that the excitation causes a large percentage
change in minority carrier hole concentration and a relatively small change
in the electron concentration.

In summary, the quasi-Fermi levels F,, and F), are the steady state ana-
logues of the equilibrium Fermi level Er. When excess carriers are present,
the deviations of F, and F, from E indicate how far the electron and hole
populations are from the equilibrium values n, and p,. A given concentration
of excess EHPs causes a large shift in the minority carrier quasi-Fermi level
compared with that for the majority carriers. The separation of the quasi-
Fermi levels F, — F, is a direct measure of the deviation from equilibrium
(at equilibrium F,, = F, = Ep). The concept of quasi-Fermi levels is very
useful in visualizing minority and majority carrier concentrations in devices
where these quantities vary with position.

4.3.4 Photoconductive Devices

There are a number of applications for devices which change their resistance
when exposed to light. For example, such light detectors can be used in the
home to control automatic night lights which turn on at dusk and turn off
at dawn. They can also be used to measure illumination levels, as in expo-
sure meters for cameras. Many systems include a light beam aimed at the
photoconductor, which signals the presence of an object between the source
and detector. Such systems are useful in moving-object counters, burglar
alarms, and many other applications. Detectors are used in optical signaling
systems in which information is transmitted by a light beam and is received
at a photoconductive cell.

Considerations in choosing a photoconductor for a given application
include the sensitive wavelength range, time response, and optical sensitiv-
ity of the material. In general, semiconductors are most sensitive to photons

%ln some fexts the quasi-Fermi level is called IMREF, which is Fermi spelled backward.
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with energies equal to the band gap or slightly more energetic than band
gap. Less energetic photons are not absorbed, and photons with hv > E,
are absorbed at the surface and contribute little to the bulk conductiv-
ity. Therefore, the table of band gaps (Appendix III) indicates the photon
energies to which most semiconductor photodetectors respond. For example,
CdS (E, = 2.42eV) is commonly used as a photoconductor in the visible
range, and narrow-gap materials such as Ge (0.67 eV) and InSb (0.18 eV)
are useful in the infrared portion of the spectrum. Some photoconductors
respond to excitations of carriers from impurity levels within the band gap
and therefore are sensitive to photons of less than band gap energy.

The optical sensitivity of a photoconductor can be evaluated by exam-
ining the steady state excess carrier concentrations generated by an optical
generation rate g, If the mean time each carrier spends in its respective
band before capture is 7, and T,, we have

on = 1,8, and dp = 1,8, (4-16)
and the photoconductivity change is

Ao = qgop(TmU“n + Tp/J“p) (4_17)

For simple recombination, 7, and 7, will be equal. If trapping is present,
however, one of the carriers may spend little time in its band before being
trapped. From Eq. (4-17) it is obvious that for maximum photoconductive
response, we want high mobilities and long lifetimes. Some semiconductors
are especially good candidates for photoconductive devices because of their
high mobility; for example, InSb has an electron mobility of about 10° cm*/V-s
and therefore is used as a sensitive infrared detector in many applications.

The time response of a photoconductive cell is limited by the recombi-
nation times, the degree of carrier trapping, and the time required for carriers
to drift through the device in an electric field. Often these properties can be
adjusted by proper choice of material and device geometry, but in some cases
improvements in response time are made at the expense of sensitivity. For
example, the drift time can be reduced by making the device short, but this
substantially reduces the responsive area of the device. In addition, it is often
desirable that the device have a large dark resistance, and for this reason,
shortening the length may not be practical. There is usually a compromise
between sensitivity, response time, dark resistance, and other requirements
in choosing a device for a particular application.
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When excess carriers are created nonuniformly in a semiconductor, the elec-
tron and hole concentrations vary with position in the sample. Any such
spatial variation (gradient) in n and p calls for a net motion of the carriers
from regions of high carrier concentration to regions of low carrier con-
centration. This type of motion is called diffusion and represents an impor-
tant charge transport process in semiconductors. The two basic processes

4.4
DIFFUSION OF
CARRIERS
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Figure 4-12
Spreading of a
pulse of electrons

by diffusion.

of current conduction are diffusion due to a carrier gradient and drift in an
electric field.

4.4.1 Diffusion Processes

When a bottle of perfume is opened in one corner of a closed room, the scent
is soon detected throughout the room. If there is no convection or other net
motion of air, the scent spreads by diffusion. The diffusion is the natural result
of the random motion of the individual molecules. Consider, for example, a
volume of arbitrary shape with scented air molecules inside and unscented
molecules outside the volume. All the molecules undergo random thermal
motion and collisions with other molecules. Thus each molecule moves in
an arbitrary direction until it collides with another air molecule, after which
it moves in a new direction. If the motion is truly random, a molecule at the
edge of the volume has equal probabilities of moving into or out of the vol-
ume on its next step (assuming the curvature of the surface is negligible on
the molecular scale). Therefore, after a mean free time 7, half the molecules
at the edge will have moved into the volume and half will have moved out of
the volume. The net effect is that the volume containing scented molecules
has increased. This process will continue until the molecules are uniformly
distributed in the room. Only then will a given volume gain as many mol-
ecules as it loses in a given time. In other words, net diffusion will continue
as long as gradients exist in the distribution of scented molecules.

Carriers in a semiconductor diffuse in a carrier gradient by random
thermal motion and scattering from the lattice and impurities. For example,
a pulse of excess electrons injected at x = 0 at time ¢ = ( will spread out in
time as shown in Fig. 4-12. Initially, the excess electrons are concentrated at

n (x)

Ut:O
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x = 0; as time passes, however, electrons diffuse to regions of low electron
concentration until finally n(x) is constant.

We can calculate the rate at which the electrons diffuse in a one-
dimensional problem by considering an arbitrary distribution n(x) such
as Fig. 4-13a. Since the mean free path [ between collisions is a small incre-
mental distance, we can divide x into segments [/ wide, with n(x) evaluated at
the center of each segment (Fig. 4-13b).

The electrons in segment (1) to the left of x, in Fig. 4-13b have equal
chances of moving left or right, and in a mean free time 7 one-half of them
will move into segment (2). The same is true of electrons within one mean
free path of x to the right; one-half of these electrons will move through x,
from right to left in a mean free time. Therefore, the net number of electrons
passing x, from left to right in one mean free time is (n,/A) — 3(n,IA), where
the area perpendicular to x is A. The rate of electron flow in the +x-direction
per unit area (the electron flux density ¢,) is given by

bix) = 5o = ) (4-18)

Since the mean free path [ is a small differential length, the difference
in electron concentration (n; — n,) can be written as

_n(x) —n(x + Ax)z
B Ax

n —n, (4*19)
where x is taken at the center of segment (1) and Ax = [. In the limit of small
Ax (i.e.,small mean free path [ between scattering collisions), Eq. (4-18) can
be written in terms of the carrier gradient dn(x)/dx:

? n(x) — n(x + Ax) _ =1 dn(x)

= — 1.
b(x) = 77 Jlim, Ax 2% dx

(4-20)
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Figure 4-13

An arbitrary
electron
concentration
gradient in one
dimension: (a)
division of n(x)
info segments of
length equal to a
mean free path
for the electrons;
(b) expanded
view of two of the
segments centered
at xp.
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The quantity /2t is called the electron diffusion coefficient’ D,, with
units cm?s. The minus sign in Eq. (4-20) arises from the definition of the
derivative; it simply indicates that the net motion of electrons due to diffu-
sion is in the direction of decreasing electron concentration. This is the result
we expect, since net diffusion occurs from regions of high particle concen-
tration to regions of low particle concentration. By identical arguments, we
can show that holes in a hole concentration gradient move with a diffusion
coefficient D,,. Thus

dn(x)

d)n(x) = _Dn dx (4—2 1 El)
d
d,(x) = Z(x) (4-21b)

The diffusion current crossing a unit area (the current density) is the
particle flux density multiplied by the charge of the carrier:

dn(x) dn(x)
Tdift) = ~(~)D,~ = = +aD, (4-22a)
J(dift) = —(+q)D, ’; ) _ —qud‘; ix) (4-22b)

It is important to note that electrons and holes move together in a car-
rier gradient [Eqgs. (4-21)], but the resulting currents are in opposite direc-
tions [Egs. (4-22)] because of the opposite charge of electrons and holes.

4.4.2 Diffusion and Drift of Carriers; Built-in Fields

If an electric field is present in addition to the carrier gradient, the current
densities will each have a drift component and a diffusion component

dn(x) N
Jn(x) = qp“nn(x)%(x) + an dx (47238)
drift diffusion
B dp(x)
J(0) = qup(x)E) — gD, (4-23b)

and the total current density is the sum of the contributions due to electrons
and holes:

J(x) = J,(x) + J,(x) (4-24)

7If motion in three dimensions were included, the diffusion would be smaller in the xdirection. Actually,
the diffusion coefficient should be calculated from the true energy distributions and scattering mechanisms.
Diffusion coefficients are usually determined experimentally for a particular material, as described in
Section 4.4.5.
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______ > &, (diff) and &, (drift)

&(x) ———— J,(diff.) and J, (drift)

—

—————— ~ b, (diff)

\n(x)
- ———— ¢, (drift.)
\p(x) -~ (diff)

—> J, (drift.)

We can best visualize the relation between the particle flow and the
current of Egs. (4-23) by considering a diagram such as shown in Fig. 4-14.
In this figure an electric field is assumed to be in the x-direction, along with
carrier distributions n(x) and p(x) which decrease with increasing x. Thus
the derivatives in Eqs. (4-21) are negative, and diffusion takes place in the
+x-direction. The resulting electron and hole diffusion currents [/, (diff.)
and J, (diff.)] are in opposite directions, according to Egs. (4-22). Holes drift
in the direction of the electric field [¢, (drift)], whereas electrons drift in
the opposite direction because of their negative charge. The resulting drift
current is in the +x-direction in each case. Note that the drift and diffusion
components of the current are additive for holes when the field is in the
direction of decreasing hole concentration, whereas the two components
are subtractive for electrons under similar conditions. The total current may
be due primarily to the flow of electrons or holes, depending on the relative
concentrations and the relative magnitudes and directions of electric field
and carrier gradients.

An important result of Egs. (4-23) is that minority carriers can con-
tribute significantly to the current through diffusion. Since the drift terms
are proportional to carrier concentration, minority carriers seldom provide
much drift current. On the other hand, diffusion current is proportional to
the gradient of concentration. For example, in n-type material the minority
hole concentration p may be many orders of magnitude smaller than the
electron concentration n, but the gradient dp/dx may be significant. As a
result, minority carrier currents through diffusion can sometimes be as large
as majority carrier currents.

In discussing the motion of carriers in an electric field, we should indi-
cate the influence of the field on the energies of electrons in the band dia-
grams. Assuming an electric field €(x) in the x-direction, we can draw the
energy bands as in Fig. 4-15, to include the change in potential energy of
electrons in the field. Since electrons drift in a direction opposite to the
field, we expect the potential energy for electrons to increase in the direc-
tion of the field, as in Fig. 4-15. The electrostatic potential ¥'(x) varies in
the opposite direction, since it is defined in terms of positive charges and is
therefore related to the electron potential energy E(x) displayed in the figure

by V(x) = E(x)/(—q)-
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Figure 4-14

Drift and diffusion
directions for
electrons and
holes in a

carrier gradient
and an electric
field. Particle
flow directions
are indicated by
dashed arrows,
and the resulting
currents are
indicated by solid

arrows.
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Figure 4-15
Energy band
diagram of a

semiconductor
in an electric

field ¢(x).

From the definition of electric field,

d¥(x)

é(x) = — (4-25)
we can relate €(x) to the electron potential energy in the band diagram by
choosing some reference in the band for the electrostatic potential. We are
interested only in the spatial variation V' (x) for Eq. (4-25). Choosing E; as
a convenient reference, we can relate the electric field to this reference by

dV(x)  d[ E; ] _1dE
dx dx|_(—q) g dx

Ex) = — (4-26)

Therefore, the variation of band energies with €(x) as drawn in Fig. 4-15
is correct. The direction of the slope in the bands relative to € is simple
to remember: Since the diagram indicates electron energies, we know
the slope in the bands must be such that electrons drift “downhill” in the
field. Therefore, € points “uphill” in the band diagram.

At equilibrium, no net current flows in a semiconductor. Thus any fluc-
tuation which would begin a diffusion current also sets up an electric field
which redistributes carriers by drift. An examination of the requirements
for equilibrium indicates that the diffusion coefficient and mobility must be
related. Setting Eq. (4-23b) equal to zero for equilibrium, we have

D, 1 dp(x)
Ex) = ——— 4-27
W= ) e
Using Eq. (3-25b) for p(x),
D, 1 (dE; dEF>
%(x) = Mka< dx - g (4—28)
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Table 4-1  Diffusion coefficient and mobility of electrons and holes for intrinsic
semiconductors at 300 K. Note: Use Fig. 3-23 for doped semiconductors.

D, (cm?/s) D, em?/s) M, [cm?/V-s) p [em?/V-s)
Ge 100 50 3900 1900
Si 35 12.5 1350 480
GaAs 220 10 8500 400

The equilibrium Fermi level does not vary with x, and the derivative of
E, is given by Eq. (4-26). Thus Eq. (4-28) reduces to

D kT
== (4-29)
Looq

This result is obtained for either carrier type. This important equation
is called the Einstein relation. It allows us to calculate either D or w from a
measurement of the other. Table 4-1 lists typical values of D and p for sev-
eral semiconductors at room temperature. It is clear from these values that
D/p = 0.026 V.

An important result of the balance of drift and diffusion at equilibrium
is that built-in fields accompany gradients in E; [see Eq. (4-26)]. Such gradi-
ents in the bands at equilibrium (£ constant) can arise when the band gap
varies due to changes in alloy composition. More commonly, built-in fields
result from doping gradients. For example, a donor distribution N,(x) causes
a gradient in ny(x), which must be balanced by a built-in electric field €(x).

4.4.3 Diffusion and Recombination; The Continuity Equation

In the discussion of diffusion of excess carriers, we have thus far neglected
the important effects of recombination. These effects must be included in
a description of conduction processes, however, since recombination can
cause a variation in the carrier distribution. For example, consider a differ-
ential length A(x) of a semiconductor sample with area A in the yz-plane
(Fig. 4-16). The hole current density leaving the volume, J,(x + Ax), can
be larger or smaller than the current density entering, J,(x), depending on
the generation and recombination of carriers taking place within the vol-
ume. The net increase in hole concentration per unit time, dp /dt, is the differ-
ence between the hole flux per unit volume entering and leaving, minus the
recombination rate. We can convert hole current density to hole particle flux
density by dividing J, by g. The current densities are already expressed per
unit area; thus dividing J/,(x)/q by A(x) gives the number of carriers per unit
volume entering AxA per unit time, and (1/¢)J,(x + Ax)/Ax is the number
leaving per unit volume and time:

ap B 1 Jp(x) — Jp(x + Ax) 5p (4 %0)
ot x—x+Ax q Ax TP N
Rate of increase of hole concentra- recombination

hole buildup ~  tion in 8xA per unit time rate
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Figure 4-16
Current entering
and leaving a
volume AxA.

Jp (x + Ax)

Area, A (cm?2)

As Ax approaches zero, we can write the current change in derivative
form:
p,) _®p 14, Jp

= — (4-31a)
ot ot q ox T

The expression (4-31a) is called the continuity equation for holes. For
electrons we can write

dn _ 14, en

a q ox T (4-31b)

since the electronic charge is negative.

When the current is carried strictly by diffusion (negligible drift), we
can replace the currents in Egs. (4-31) by the expressions for diffusion cur-
rent; for example, for electron diffusion we have

B
J,(diff.) = "D"T: (4-32)

Substituting this into Eq. (4-31b) we obtain the diffusion equation for
electrons,

9 Pon B
2 _p -2 (4-33a)
ot 0x Tn

and similarly for holes,
adp #dp  dp
—=D,— — — 4-33b
at P> T, ( )

These equations are useful in solving transient problems of diffusion
with recombination. For example, a pulse of electrons in a semiconductor
(Fig. 4-12) spreads out by diffusion and disappears by recombination. To
solve for the electron distribution in time, n(x, t), we would begin with the
diffusion equation, Eq. (4-33a).
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4.4.4 Steady State Carrier Injection; Diffusion Length

In many problems a steady state distribution of excess carriers is maintained,
such that the time derivatives in Egs. (4-33) are zero. In the steady state case
the diffusion equations become

d*sn on on
= = — 4-34¢
dx? D,t, L? ( 2)
s R d
P_ P P (4-34b)
dx Dy, L,

(steady state)

where L, = V D,7, is called the electron diffusion length and L, is the dif-
fusion length for holes. We no longer need partial derivatives, since the time
variation is zero for steady state.

The physical significance of the diffusion length can be understood
best by an example. Let us assume that excess holes are somehow injected
into a semi-infinite semiconductor bar at x = 0, and the steady state hole
injection maintains a constant excess hole concentration at the injection
point 3p(x = 0) = Ap.The injected holes diffuse along the bar, recombining
with a characteristic lifetime 7,. In steady state we expect the distribution of
excess holes to decay to zero for large values of x, because of the recombina-
tion (Fig. 4-17). For this problem we use the steady state diffusion equation
for holes, Eq. (4-34b). The solution to this equation has the form

dp(x) = Cie¥lr + Cre /b (4-35)

We can evaluate C; and C, from the boundary conditions. Since recom-
bination must reduce 8p(x) to zero for large values of x,8p = Oatx = o and
therefore C; = 0. Similarly, the condition 8p = Ap atx = 0gives C, = Ap,
and the solution is

’ dp(x) = Ape™/tr (4-36)

p(x)

x/L,

p(x) = po + Ape”
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Figure 4-17
Injection of holes
at x = O, giving a
steady state hole
distribution p(x)
and a resulting
diffusion current

density J,(x).
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EXAMPLE 4-4

The injected excess hole concentration dies out exponentially in x
due to recombination, and the diffusion length L, represents the distance
at which the excess hole distribution is reduced to 1/e of its value at the
point of injection. We can show that L, is the average distance a hole diffuses
before recombining. To calculate an average diffusion length, we must obtain
an expression for the probability that an injected hole recombines in a par-
ticular interval dx. The probability that a hole injected at x = 0 survives to x
without recombination is 8p(x)/Ap = exp(—x/L,), the ratio of the steady
state concentrations at x and 0. On the other hand, the probability that a hole
at x will recombine in the subsequent interval dx is

dp(x) — dp(x + dx)  —(ddp(x)/dx)dx 1
= = —dx (4-37)
dp(x) dp(x) L,

Thus the total probability that a hole injected at x = 0 will recombine

in a given dx is the product of the two probabilities:

1 1
(e™ L")(de> = fe_x/Lf?dx (4-38)

p p

Then, using the usual averaging techniques described by Eq. (2-21), the
average distance a hole diffuses before recombining is

* efx/L,,
(x) =/ X7 dx =L, (4-39)
0

P

The steady state distribution of excess holes causes diffusion, and
therefore a hole current, in the direction of decreasing concentration. From
Eqgs. (4-22b) and (4-36) we have

dp ddp

J(x) = —gD,—— = —qD,—— = &A e = &8 (x) (4-40)
P q pdx q pdx qu p qu p

Since p(x) = p, + 8p(x),the space derivative involves only the excess
concentration. We notice that since dp(x) is proportional to its derivative for
an exponential distribution, the diffusion current at any x is just proportional
to the excess concentration dp at that position.

Although this example seems rather restricted, its usefulness will
become apparent in Chapter 5 in the discussion of p-n junctions. The injec-
tion of minority carriers across a junction often leads to exponential distri-
butions as in Eq. (4-36), with the resulting diffusion current of Eq. (4-40).

In a very long p-type Si bar with cross-sectional area = 0.5 cm* and
N, = 10" cm ™, we inject holes such that the steady state excess hole con-
centration is 5 X 10'® cm ™ at x = 0. What is the steady state separation
between F, and E_ at x = 1000 A? What is the hole current there? How
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much is the excess stored hole charge? Assume that w, = 500 cm?/V-s
and T, = 107%s.
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kT

D, =~y = 0.0259 X 500 = 1295 cm/s

L,= VD, = V1295 X 107 = 3.6 X 10° cm

x 107

p=po+ Ape =107 + 5 X 106 36X 107

= 1379 X 107 = pe~ BT = (1.5 X 10'° cm3)elEi = BT

1.379 x 10"
Ei - Fp = (ll’l 15)(1010) -0.0259 = 0415eV

E,— F,=11/2¢eV + 0415eV = 0.965 eV

We can calculate the hole current from Eq. (4-40)

dp
I = —qADpE

p

= ga2(ap)e T
L,

__10°
1.6 X 107" x 0.5 X 1279575 X 5 X 1016 36X 10°
3.6 X 10

= 1.09 X 10°A

0, = qA(Ap)L,
= 1.6 X 107°(0.5)(5 X 10')(3.6 x 107%)
=144 X 107C

4.4.5 The Haynes-Shockley Experiment

One of the classic semiconductor experiments is the demonstration of
drift and diffusion of minority carriers, first performed by J. R. Haynes
and W. Shockley in 1951 at the Bell Telephone Laboratories. The experiment
allows independent measurement of the minority carrier mobility u and
diffusion coefficient D. The basic principles of the Haynes—Shockley experi-
ment are as follows: A pulse of holes is created in an n-type bar (for example)
that contains an electric field (Fig. 4-18); as the pulse drifts in the field and
spreads out by diffusion, the excess hole concentration is monitored at some
point down the bar; the time required for the holes to drift a given distance

SOLUTION
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Figure 4-18

Drift and diffusion
of a hole pulse in
an ntype bar: (a)
sample geometry;
(b) position and
shape of the pulse
for several times
during its drift
down the bar.

Light pulse =L
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in the field gives a measure of the mobility; the spreading of the pulse during
a given time is used to calculate the diffusion coefficient.

In Fig. 4-18 a pulse of excess carriers is created by a light flash at
some point x = 0 in an n-type semiconductor (n, > p,). We assume that
the excess carriers have a negligible effect on the electron concentration
but change the hole concentration significantly. The excess holes drift in the
direction of the electric field and eventually reach the point x = L, where
they are monitored. By measuring the drift time #,, we can calculate the drift
velocity v, and, therefore, the hole mobility:

L

v, = — (4-41)
la
Vv,

by = (4-42)

Thus the hole mobility can be calculated directly from a measurement of the
drift time for the pulse as it moves down the bar. In contrast with the Hall
effect (Section 3.4.5), which can be used with resistivity to obtain the major-
ity carrier mobility, the Haynes—Shockley experiment is used to measure the
minority carrier mobility.

As the pulse drifts in the € field it also spreads out by diffusion. By
measuring the spread in the pulse, we can calculate D,,.To predict the distri-
bution of holes in the pulse as a function of time, let us first reexamine the
case of diffusion of a pulse without drift, neglecting recombination (Fig. 4-12).
The equation which the hole distribution must satisfy is the time-dependent
diffusion equation, Eq. (4-33b). For the case of negligible recombination
(1, long compared with the times involved in the diffusion), we can write the
diffusion equation as

dp(x, 1) D 9%dp(x, 1)

443
ot P an? (4-43)
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The function which satisfies this equation is called a gaussian distribution,

AP
dp(x, 1) = {
2N @D t

P

}exz/‘“%f (4-44)

where AP is the number of holes per unit area created over a negligibly small
distance at ¢+ = 0.The factor in brackets indicates that the peak value of the
pulse (at x = 0) decreases with time, and the exponential factor predicts the
spread of the pulse in the positive and negative x-directions (Fig. 4-19). If
we designate the peak value of the pulse as gﬁ at any time (say ¢;), we can
use Eq. (4—44) to calculate D, from the value of 8p at some point x. The most
convenient choice is the point Ax/2, at which 8p is down by 1/e of its peak
value gﬁ At this point we can write

e_lf/)]; - gl;e—(Ax/Z)Z/w,,zd (4-45)
(Ax)’
T (4-46)

Since Ax cannot be measured directly, we use an experimental setup
such as Fig. 4-20, which allows us to display the pulse on an oscilloscope as
the carriers pass under a detector. As we shall see in Chapter 5, a forward-
biased p-n junction serves as an excellent injector of minority carriers,
and a reverse-biased junction serves as a detector. The measured quantity
in Fig. 4-20 is the pulse width Az displayed on the oscilloscope in time. It
is related to Ax by the drift velocity, as the pulse drifts past the detector
point (2)

L
Ax = Atv, = Attf (4-47)
d
o Y
2 \/Terzd
1 ~
/"
Ax
| |
/ \
| | x

Ax/2 0 Ax/2
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Figure 4-19
Calculation
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shape of the §p
distribution after
time t;. No drift or
recombination is

included.
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Figure 4-20 L —ﬂ
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EXAMPLE 4-5  An n-type Ge sample is used in the Haynes—Shockley experiment shown
in Fig. 4-20. The length of the sample is 1 cm, and the probes (1) and (2)
are separated by 0.95 cm. The battery voltage E; is 2 V. A pulse arrives
at point (2) 0.25 ms after injection at (1); the width of the pulse At is
117 ps. Calculate the hole mobility and diffusion coefficient, and check
the results against the Einstein relation.

(b)

SOLUTION 0.95/(0.25 X 1073
b, = % _ 095/ - ) _ 1900 em?/(V-s)
(Ax?  (ALy

P 161, 16t;

(117 X 0.95)° X 107

= 49.4 cm?
16(0.25)° X 10 cms

4.4.6 Gradients in the Quasi-Fermi Levels

In Section 3.5 we saw that equilibrium implies no gradient in the Fermi level
Ep. In contrast, any combination of drift and diffusion implies a gradient in
the steady state quasi-Fermi level.
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We can use the results of Eqs. (4-23), (4-26), and (4-29) to demon-
strate the power of the concept of quasi-Fermi levels in semiconductors [see
Eq. (4-15)]. If we take the general case of nonequilibrium electron concen-
tration with drift and diffusion, we must write the total electron current as

dn(x)

1u(x) = quun(x)é(x) + ¢D,— (4-48)
where the gradient in electron concentration is
dn(x) d n(x) (dF dE)
= L et BTy = 2 (C0n 85 4-49
dr de ™ =% e ™ (=49

Using the Einstein relation, the total electron current becomes

dF, dE,
- } (4-50)

Ji®) = quan()E) + w”@‘){ i de

But Eq. (4-26) indicates that the subtractive term in the brackets is just
qé(x), giving a direct cancellation of gu,n(x)€(x) and leaving

Ju(X) =

(4-51)

Thus, the processes of electron drift and diffusion are summed up by
the spatial variation of the quasi-Fermi level. The same derivation can be
made for holes, and we can write the current due to drift and diffusion in the
form of a modified Ohm’s law

d

Jo(x) = qun(x) ——— ar /q) crn(x)wT’;/q) (4-52a)
d(F

Jp(x) = qu,p(x) « ,,x/q) crp(x)(d”x/q) (4-52b)

Therefore, any drift, diffusion, or combination of the two in a semi-
conductor results in currents proportional to the gradients of the two quasi-
Fermi levels. Conversely, a lack of current implies constant quasi-Fermi
levels. One can use a hydrostatic analogy for quasi-Fermi levels and identify
it as water pressure in a system. Just as water flows from a high-pressure
region to a low-pressure region, until in equilibrium the water pressure is the
same everywhere, similarly electrons flow from a high- to low-electron quasi-
Fermi level region, until we get a flat Fermi level in equilibrium. Quasi-Fermi
levels are sometimes also known as electrochemical potentials because, as
we just saw, the driving force for carriers is governed partly by gradients
of electrical potential (or electric field), which determines drift, and partly
by gradients of carrier concentration (which is related to a thermodynamic
concept called chemical potential), giving rise to diffusion.
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SUMMARY

4.1

4.2

4.3

44

4.5

Excess carriers, above the equilibrium values contributed by doping, may be
created optically (or by electrical biasing in devices). Generation—recombination
(G-R) of electron-hole pairs (EHPs) can occur by absorption of the pho-
tons with energy greater than the band gap, balanced by direct or indirect
recombination.

Generation-recombination processes can be mediated by traps, especially
deep traps near midgap. Band-to-band or trap-assisted G-R processes lead to
an average lifetime for the excess carriers. Carrier lifetime multiplied by the
optical generation rate establishes a steady state excess population of carri-
ers. The square root of carrier lifetime multiplied by the diffusion coefficient
determines the diffusion length.

In equilibrium, we have a constant Fermi level. In nonequilibrium with excess
carriers, Fermi levels are generalized to separate quasi-Fermi levels for elec-
trons and holes. The quasi-Fermi level splitting is a measure of the departure
from equilibrium. Minority carrier quasi-Fermi levels change more than major-
ity carrier quasi-Fermi levels because the relative change of minority carriers
is larger. Gradients in the quasi-Fermi level determine the net drift—diffusion
current.

Diffusion flux measures the flow of carriers from high- to low-concentration
regions and is given by the diffusivity times the concentration gradient. The
direction of diffusion current is opposite to the flux for the negative electrons,
but in the same direction for the positive holes. Carrier diffusivity is related to
mobility by the thermal voltage kT /q (Einstein relation).

When carriers move in a semiconductor due to drift or diffusion, the time-
dependent carrier concentrations at different points is given by the carrier
continuity equation, which says that if more carriers flow into a point than flow
out, the concentration will increase as a function of time and vice versa. G-R
processes also affect carrier concentrations.

PROBLEMS

41

4.2

4.3

With Ep located 0.4 eV above the valence band in a Si sample, what charge
state would you expect for most Ga atoms in the sample? What would be the
predominant charge state of Zn? Au? Note: By charge state we mean neutral,
singly positive, doubly negative, etc.

On a Si sample, incident light is at t = 0 uniformly, which generates excess
carriers for ¢ > 0. The generation rate for carriers is 6 X 10*/cm®. Sample is
doped with 2 X 10"/cm® As atoms. Determine the conductivity of the sample
att = 5 ms. Find the separation of quasi Fermi levels at 300 K.

Construct a semilogarithmic plot such as Fig. 4-7 for Si doped with
2 X 10" donors/cm® and having 4 X 10" EHP/cm?® created uniformly at t = 0.
Assume that 7, = 7, = 5 us.
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4.5

4.6

4.7

4.8

4.9

4.10
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4.12
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Calculate the recombination coefficient «, for the low-level excitation described
in Prob. 4.3. Assume that this value of «, applies when the GaAs sample is uni-
formly exposed to a steady state optical generation rate g,, = 10" EHP/cm’-s.
Find the steady state excess carrier concentration An = Ap.

An intrinsic Si sample is doped with donors from one side such that
N; = N, exp(—ax). (a) Find an expression for the built-in electric field at
equilibrium over the range for which N; > n,. (b) Evaluate the field when
a = 1 (um)~% (c) Sketch a band diagram such as in Fig. 4-15 and indicate the
direction of the field.

A Si sample with 10" /cm?® donors is uniformly optically excited at room tem-
perature such that 10"’ /cm® EHPs are generated per second. Find the separa-
tion of the quasi-Fermi levels and the change of conductivity upon shining the
light. Electron and hole lifetimes are both 10 ps. D, = 12 cm*/s.

An n-type Si sample is doped at 10" cm ™. We shine light on it to create EHPs
at 10" cm™/s. What is the steady state concentration of minority carriers, if
the lifetime is 100 ns? How long does it take for the hole concentration to drop
10%, after the light is switched off? How long for the hole concentration to
reach a value that is 10% higher than the thermal equilibrium value?

An n-type Si sample with N, = 10" cm ™ is steadily illuminated such that

8op = 10" EHP/cm’-s.If 7, = 7, = 1 us for this excitation, calculate the sepa-
ration in the quasi-Fermi levels, (F,, — F,). Draw a band diagram such as Fig. 4-11.

For a 2-cm-long doped Si bar (N, = 10"%m™3) with a cross-sectional
area = 0.05 cm?, what is the current if we apply 10 V across it? If we gen-
erate 10*° EHPs per second per cm® uniformly in the bar and the lifetime
T, =T, = 10~*s, what is the new current? Assume the low-level «, doesn’t
change for high-level injection. If the voltage is then increased to 100,000 V,
what is the new current? Assume p, = 500 cm?/V-s, but you must choose the
appropriate value for electrons.

Design and sketch a photoconductor using a 5-um-thick film of CdS, assuming
that 7, = 7, = 10 °s and N, = 10"*cm . The dark resistance (with g,, = 0)
should be 10 M}, and the device must fit in a square 0.5 cm on a side; there-
fore, some sort of folded or zigzag pattern is in order. With an excitation of
8op = 10*' EHP /em’-s, what is the resistance change?

A 80 mW laser beam with wavelength A = 600 nm is focused on a Si sample
of 80 um thickness. The absorption coefficient of the sample is @ =8 X 10*/cm.
Find the number of photons emitted per second, assuming perfect quantum
efficiency. What power should be delivered to the sample as heat?

A material is doped such that electron concentration varies linearly across the
sample, which is 0.5 wm thick. Donor concentration varies from 0 (at x = 0)
to 10" /cm? (at x = 0.5 wm). Write equations for total electron and hole con-
centrations as a function of distance x. Determine electron and hole diffusion
current densities if the diffusion coefficients are D,, = 30 cm?*/V-sec and D,=
12 cm?/V-sec. Find the expression for Fermi level (E}) as a function of x.
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4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

For the steady state minority hole distribution shown in Fig. 4-17, find the
expression for the hole quasi-Fermi level position E; — F,(x) while p(x) > p,
(i.e., while F), is below Er). On a band diagram, draw the variation of F,(x). Be
careful —when the minority carriers are few (e.g., when Ap is n;), F,, still has a
long way to go to reach Ej.

We inject electrons into a p-type semiconductor 5 microns long such that the
concentration varies linearly from 10%*° cm™ to 0 from left to right. If the mobil-
ity of the electrons is 500 cm?/V-s, what is the current density if the electric
fields are negligible?

We shine 10" photons/cm?-s which are all absorbed near the surface x = 0
of a p-type semiconductor, raising the temperature of the sample to 500 K. If
the minority carrier lifetime is 200 ns in this material, electron mobility is
2000 cm?/V-s, and hole mobility is 500 cm?/V-s, calculate the electron diffu-
sion current density 20 microns from the surface.

A long Si sample, n-doped at 10”7 cm™, with a cross-sectional area of
0.5 cm? is optically excited by a laser such that 10°’/cm® EHPs are gener-
ated per second at x = 0 wm. They diffuse to the right. What is the total dif-
fusion current at x = 50 um? Electron and hole lifetimes are both 10 ps.
p, = 500 cm®/V-s; D, = 36 cm*/s.

In an n-type semiconductor bar, there is an increase in electron concentra-
tion from left to right and an electric field pointing to the left. With a suitable
sketch, indicate the directions of the electron drift and diffusion current flow
and explain why. If we double the electron concentration everywhere, what
happens to the diffusion current and the drift current? If we add a constant
concentration of electrons everywhere, what happens to the drift and diffusion
currents? Explain your answers with appropriate equations.

The current required to feed the hole injection at x = 0 in Fig. 4-17 is obtained
by evaluating Eq. (4-40) at x = 0. The result is I,(x = 0) = gAD,Ap/L,.
Show that this current can be calculated by integrating the charge stored in
the steady state hole distribution Ap(x) and then dividing by the average hole
lifetime 7,. Explain why this approach gives /,(x = 0).

The direction of the built-in electric field can be deduced without math by
sketching the result of a doping gradient on the band diagram. Starting with a
flat Fermi level at equilibrium, place E; near or far from Er as the doping is var-
ied for the two cases of a gradient in donor or acceptor doping as in Prob. 4.5.
Show the electric field direction in each case, based on Eq. (4-26). If a minor-
ity carrier is injected into the impurity gradient region, in what direction is it
accelerated in the two cases? This is an interesting effect that we will use later
in discussing bipolar transistors.

In Prob. 4.5, the direction of the built-in electric field due to a gradient in
doping was determined from Egs. (4-23) and (4-26). In this problem, you
are asked to explain qualitatively why the field must arise and find its direc-
tion. (a) Sketch a donor doping distribution as in Prob. 4.5, and explain the field
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required to keep the mobile electrons from diffusing down the gradient. Repeat
for acceptors and holes. (b) Sketch a microscopic region of the doping distribu-
tion, showing ionized donors and the resulting mobile electrons. Explain the
origin and direction of the field as the electrons attempt to diffuse toward lower
concentrations. Repeat for acceptors and holes.

A p-type Sisample is used in the Haynes-Shockley experiment. The length of
the sample is 2 cm, and two probes are separated by 1.8 cm. Voltage applied at
the two ends is 5 V. A pulse arrives at the collection point at 0.608 ms, and the
separation of the pulse is 180 sec. Calculate mobility and diffusion coefficient
for minority carriers. Verify it from the Einstein relation.

A semiconductor bar of length 2 wm with intrinsic carrier concentration of
10" em 3 is uniformly doped with donors at a concentration of 2 X 10" cm™and
acceptors at a concentration of 10" cm.If D, = 26 cm*/s and D, = 52 cm’/s,
calculate the electron and hole drift current densities for an applied voltage
of 5 V. In this semiconductor, electrons are in the ohmic regime for fields less
than 10° V /cm, but travel with a saturation velocity of 10% cm /s for fields above
that. For holes, they are ohmic below 10* V/cm, and travel with a saturation
velocity of 10° cm/s above that field. What are the electron and hole diffusion
current densities in the middle of the bar? (Assume T = 300 K.)

A recently discovered semiconductor has N, = 10" cm ™, N, = 5 X 10¥ cm™,
and E, = 2 eV.Ifitis doped with 10" donors (fully ionized), calculate the elec-
tron, hole, and intrinsic carrier concentrations at 627°C. Sketch the simplified
band diagram, and specify the value of £ and E; with respect to the band edges.
If we apply 5 V across a piece of this semiconductor 8 pm long, what is the
current? The piece is 2 pm wide and 1.5 pm thick. The diffusion coefficient of
holes and electrons is 25 cm?/s and 75 cm?/s, respectively.

A novel semiconductor sample has L = 2 um, W = 0.5 wm, and thickness of
0.2 pm. It has an intrinsic carrier concentration of 10'2 cm™. If it has an ionized
donor concentration of 2 X 10'? cm™>, calculate the electron and hole currents
for an applied bias of 10V across the length of the bar, assuming ohmic behav-
ior for electrons, but holes are traveling at saturation velocity. The electron
and hole diffusion coefficients are 20 cm*/V-s and 5 cm?/V-s, respectively. The
electron and hole saturation velocities are 10° cm /s and 107cm /s, respectively,
in this semiconductor.

Sketch the simplified band diagram (with proper labeling of positions and
energies) for a semiconductor bar with a band gap of 2 eV and N, = 10"’ cm ™,
n* doped very heavily between 0 cm and 0.2 cm, n-type doped region (10'7 cm ™)
from 0.2 cm to 0.7 cm, and then very heavily n™ doped from 0.7 cm to 1 cm, to
which we hook up a 0.5V battery (positive terminal connected to left side of bar).
There is negligible voltage drop across the highly conducting, heavily doped n*
regions. (Draw a schematic of the bar, and align the band diagram under that
schematic).

What is the current density if the electron diffusion coefficient is
100 cm?/V-s.If the electrons were injected with negligible kinetic energy from
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the right side of the bar, and they traveled without scattering, what is the kinetic
energy of the electrons at x = 0.1 cm, 0.6 cm, and 0.9 cm?
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SELF QUIZ

Question 1

Consider a p-type semiconductor that has a band gap of 1.0 eV and a minority elec-
tron lifetime of 0.1 us, and is uniformly illuminated by light having photon energy
of2.0eV.

(a) Whatrate of uniform excess carrier generation is required to generate a uniform
electron concentration of 10'°/cm®?

(b) How much optical power per cm?® must be absorbed in order to create the excess
carrier population of part (a)? (You may leave your answer in units of eV /s-cm?.)

(c) If the carriers recombine via photon emission, approximately how much opti-
cal power per cm® will be generated? (You may leave your answer in units of
eV/s-cm®.)

Question 2
(a) What do we mean by “deep” versus “shallow” traps? Which are more harmful
for semiconductor devices and why? What is an example of a deep trap in Si?

(b) Are absorption lengths of slightly above band gap photons longer in Si or
GaAs? Why?

(c) Do absorption coefficients of photons increase or decrease with photon energy?
Why?
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Question 3

Consider the following equilibrium band diagram for a portion of a semiconductor
sample with a built-in electric field €:

EC
Tk
e
T Ep E,
T_’ position

(a) Sketch the Fermi level as a function of position through the indicated point, E,
across the width of the band diagram above.

(b) On the band diagram, sketch the direction of the electric field. Is the field con-
stant or position dependent?

(c) On the following graph, sketch and label both the electron and hole concentra-
tions as a function of position across the full width of the sample. Note that the
carrier concentration scale is logarithmic such that exponential variations in
the carrier concentration with position appear as straight lines. Note also that
the horizontal axis corresponds to the intrinsic carrier concentration of n;.

log(n), log(p)

position

log(n;)

Question 4

(a) Indicate the directions of the hole and electron flux densities ¢ due to diffu-
sion and drift under these equilibrium conditions corresponding to the previous
Question 3.

(b) Indicate the directions of the hole and electron current densities j due to diffu-
sion and drift under these equilibrium conditions.
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Question 5

(a) What are the relevant equations that must be solved in general for a semicon-
ductor device problem?

(b) In general how many components of conduction current can you have in a
semiconductor device? What are they?

Question 6

(a) Consider a region in a semiconductor with an electric field directed toward the
right (—) and carrier concentrations increasing toward the left («<—). Indicate
the directions of particle fluxes ¢ (circle one for each) and charge currents j due
to drift and diffusion within that region.

(b) Based on your answers to part (a),indicate the directions of the charge currents
j due to drift and diffusion within that region.
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Junctions

OBJECTIVES

1. Determine the band diagram of a p-n junction in equilibrium and use
the Poisson’s equation to calculate electric fields and potentials

2. Determine current flow components in an “ideal” diode, and why
reverse leakage in an ideal diode is independent of bias; study
applications in rectifiers

3. Understand depletion capacitance due to dopant charges, and
diffusion capacitance due to mobile carriers

4. Study second-order effects—high-level injection, generation-
recombination in depletion region, series resistance, and graded
junctions

5. Study metal-semiconductor junctions (Schottky and ohmic) and
heterojunctions, in terms of vacuum level, electron affinity, and work
function

Most semiconductor devices contain at least one junction between p-type
and n-type material. These p-n junctions are fundamental to the performance
of functions such as rectification, amplification, switching, and other opera-
tions in electronic circuits. In this chapter we shall discuss the equilibrium
state of the junction and the flow of electrons and holes across a junction
under steady state and transient conditions. This is followed by a discussion
of metal-semiconductor junctions and heterojunctions between semiconduc-
tors having different band gaps. With the background provided in this chapter
on junction properties, we can then discuss specific devices in later chapters.

Although this book deals primarily with how devices work rather than how
they are made, it is instructive to have an overview of the fabrication process
in order to appreciate device physics. We have already discussed in Chapter 1
how single-crystal substrates and epitaxial layers needed for high-quality
devices are grown, and how the doping can be varied as a function of depth.
However, we have not discussed how doping can be varied laterally across
the surface, which is key to making integrated circuits on a wafer. Hence, it

5.1
FABRICATION OF
p-n JUNCTIONS
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Figure 5-1a
Silicon wafers
being loaded

info a furnace.
For 8-inch and
larger wafers, this
type of horizontal
loading is often
replaced by a
vertical furnace.

is necessary to be able to form patterned masks on the wafer corresponding
to the circuitry, and introduce the dopants selectively through windows in
the mask. We will first briefly describe the major process steps that form the
underpinnings of modern integrated circuit manufacturing. Relatively few
unit process steps can be used in different permutations and combinations to
make everything from simple diodes to the most complex microprocessors.

5.1.1 Thermal Oxidation

Many fabrication steps involve heating up the wafer in order to enhance a
chemical process. An important example of this is thermal oxidation of Si to
form SiO,. This involves placing a batch of wafers in a clean silica (quartz)
tube which can be heated to very high temperatures (~800—1000°C) using
heating coils in a furnace with ceramic brick insulating liners. An oxygen-
containing gas such as dry O, or H,O is flowed into the tube at atmospheric
pressure, and flowed out at the other end. Traditionally, horizontal furnaces
were used (Fig. 5-1a). More recently, it has become common to employ ver-
tical furnaces (Fig. 5-1b). A batch of Si wafers is placed in the silica wafer
holders, each facing down to minimize particulate contamination. The wafers
are then moved into the furnace. The gases flow in from the top and flow out
at the bottom, providing more uniform flow than in conventional horizontal
furnaces. The overall reactions that occur during oxidation are:

Si + O, — SiO, (dry oxidation)
Si + 2H,0 — SiO, + 2H, (wet oxidation)

In both cases, Si is consumed from the surface of the substrate. For
every micron of SiO, grown, 0.44 um of Si is consumed, leading to a 2.2X
volume expansion of the consumed layer upon oxidation. The oxidation
proceeds by having the oxidant (O, or H,O) molecules diffuse through the
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already grown oxide to the Si-SiO, interface, where the above reactions take
place. One of the very important reasons why Si integrated circuits exist (and
by extension why modern computers exist) is that a stable thermal oxide can
be grown on Si with excellent interface electrical properties. Other semicon-
ductor materials do not have such a useful native oxide. We can argue that
modern electronics and computer technology owe their existence to this
simple oxidation process. Plots of oxide thickness as a function of time, at
different temperatures, are shown for dry and wet oxidation of (100) Si in
Appendix VL.

5.1.2 Diffusion

Another thermal process that was used extensively in IC fabrication in the
past is thermal in-diffusion of dopants in furnaces such as those shown in
Fig. 5-1a.The wafers are first oxidized and windows are opened in the oxide
using the photolithography and etching steps described in Sections 5.1.6
and 5.1.7 respectively. Dopants such as B, P, or As are introduced into these
patterned wafers in a high temperature (~800—1100°C) diffusion furnace,
generally using a gas or vapor source. The dopants are gradually transported
from the high concentration region near the surface into the substrate
through diffusion, similar to that described for carriers in Section 4.4. The
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Figure 5-1b
Vertical furnace
for large Si
wafers. The silica
wafer holder

is loaded with
Si wafers and
moved into the
furnace above
for oxidation,
diffusion, or
deposition
operations.
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Figure 5-2
Impurity
concentration
profile for
fabricating a
p-n junction by
diffusion.

maximum number of impurities that can be dissolved (the solid solubility) in
Si is shown for various impurities as a function of temperature in Appendix
VII. The diffusivity of dopants in solids, D, has a strong Arrhenius depen-
dence on temperature, 7.1t is given by D = Djexp—(E,/kT),where Dy is a
constant depending on the material and the dopant, and E 4 is the activation
energy. The average distance the dopants diffuse is related to the diffusion
length as in Section 4.4.4. In this case, the diffusion length is \/E, where ¢ is
the processing time. The product Dt is sometimes called the thermal budget.
The Arrhenius dependence of diffusivity on temperature explains why high
temperatures are required for diffusion; otherwise, the diffusivities are far
too low. Since D varies exponentially with 7; it is critical to have very precise
control over the furnace temperatures, within several degrees, in order to
have control over the diffusion profiles (Fig. 5-2). The dopants are effectively
blocked or masked by the oxide because their diffusivity in oxide is very low.
The diffusivities of various dopants in Si and SiO, are shown as a function of
temperature in Appendix VIIIL. Difficulty with profile control and the very
high temperature requirement has led to diffusion being supplanted by ion
implantation as a doping technique, as discussed in Section 5.1.4.

The trend of using larger Si wafers has changed many processing steps.
For example, eight-inch and larger wafers are best handled in a vertical fur-
nace (Fig. 5-1b) rather than the traditional horizontal furnace (Fig. 5-1a).
Also, large wafers are often handled individually for a variety of deposition,
etching, and implantation processes. Such single-wafer processing has led to
development of robotic systems for fast and accurate wafer handling.

The distribution of impurities in the sample at any time during the dif-
fusion can be calculated from a solution of the diffusion equation with appro-
priate boundary conditions. If the source of dopant atoms at the surface
of the sample is limited (e.g., a given number of atoms deposited on the Si
surface before diffusion), a gaussian distribution as described by Eq. (4-44)

N N N N
N,>N,|N,;>N,

(log scale)

N (cm™3)
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(for x > 0) is obtained. On the other hand, if the dopant atoms are sup-
plied continuously, such that the concentration at the surface is maintained
at a constant value, the distribution follows what is called a complementary
error function. In Fig. 5-2, there is some point in the sample at which the
introduced acceptor concentration just equals the background donor con-
centration in the originally n-type sample. This point is the location of the
p-n junction. To the left of this point in the sample of Fig. 5-2, acceptor atoms
predominate and the material is p-type, whereas to the right of the junction,
the background donor atoms predominate and the material is n-type. The
depth of the junction beneath the surface of the sample can be controlled by
the time and temperature of the diffusion (Prob. 5.2).

In the horizontal diffusion furnace shown in Fig. 5-1a, Si wafers are
placed in the tube during diffusion, and the impurity atoms are introduced
into the gas which flows through the silica tube. Common impurity source
materials for diffusions in Si are B,O3, BBr;, and BCl; for boron; phosphorus
sources include PH;, P,Os, and POCI;. Solid sources are placed in the silica
tube upstream from the sample or in a separate heating zone of the furnace;
gaseous sources can be metered directly into the gas flow system; and with
liquid sources inert carrier gas is bubbled through the liquid before being intro-
duced into the furnace tube. The Si wafers are held in a silica “boat” (Fig. 5-1a)
which can be pushed into position in the furnace and removed by a silica rod.

Itis important to remember the degree of cleanliness required in these
processing steps. Since typical doping concentrations represent one part per
million or less, cleanliness and purity of materials are critically important.
Thus the impurity source and carrier gas must be extremely pure; the silica
tube, sample holder, and pushrod must be cleaned and etched in hydrofluoric
acid (HF) before use (once in use, the tube cleanliness can be maintained
if no unwanted impurities are introduced); finally, the Si wafers themselves
must undergo an elaborate cleaning procedure before diffusion, including
a final etch containing HF to remove any unwanted SiO, from the surface.

5.1.3 Rapid Thermal Processing

Increasingly, many thermal steps formerly performed in furnaces are being
done using what is called rapid thermal processing (RTP). This includes
rapid thermal oxidation, annealing of ion implantation, and chemical vapor
deposition, which are discussed in the following paragraphs. A simple RTP
system is shown in Fig. 5-3. Instead of having a large batch of wafers in a con-
ventional furnace where the temperature cannot be changed rapidly, a single
wafer is held (face down to minimize particulates) on low-thermal-mass
quartz pins, surrounded by a bank of high-intensity (tens of kW) tungsten—
halogen infrared lamps, with gold-plated reflectors around them. By turn-
ing on the lamps, the high-intensity infrared radiation shines through the
quartz chamber and is absorbed by the wafer, causing its temperature to rise
very rapidly (~50—100°C/s). The processing temperature can be reached
quickly, after the gas flows have been stabilized in the chamber. At the end
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of the process, the lamps are turned off, allowing the wafer temperature
to drop rapidly, once again because of the much lower thermal mass of
an RTP system compared to a furnace. In RTP, therefore, temperature is
essentially used as a “switch” to start or quench the reaction. Two critical
aspects of RTP are ensuring temperature uniformity across large wafers
and accurate temperature measurement, for example, with thermocouples
or pyrometers.

A key parameter in all thermal processing steps is the thermal bud-
get, Dt. Generally speaking, we try to minimize this quantity because an
excessive Dt product leads to loss of control over compact doping profiles,
which is detrimental to ultra-small devices. In furnace processing, thermal
budgets are minimized by operating at as low a temperature as feasible so
that D is small. On the other hand, RTP operates at higher temperatures
(~1000°C) but does so for only a few seconds (compared to minutes or
hours in a furnace).

5.1.4 lon Implantation

A useful alternative to high-temperature diffusion is the direct implanta-
tion of energetic ions into the semiconductor. In this process a beam of
impurity ions is accelerated to kinetic energies ranging from several keV
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to several MeV and is directed onto the surface of the semiconductor. As
the impurity atoms enter the crystal, they give up their energy to the lattice
in collisions and finally come to rest at some average penetration depth,
called the projected range. Depending on the impurity and its implanta-
tion energy, the range in a given semiconductor may vary from a few hun-
dred angstroms to about 1 pm. For most implantations the ions come to
rest distributed almost evenly about the projected range R, as shown in
Fig. 5-4. An implanted dose of ¢ ions/cm? is distributed approximately by
a gaussian formula

¢ 1/x — Rp 2
N(x) = ——exp| —=
V2wAR, 2\ AR,
where AR, called the straggle, measures the half-width of the distribution
at ¢ '/ of the peak (Fig. 5-4). Both R, and AR, increase with increasing

implantation energy. These parameters are shown as a function of energy
for various implant species into Si in Appendix IX.

(5-1a)
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Schematic diagram of an ion implantation system.

An ion implanter is shown schematically in Fig. 5-5. A gas contain-
ing the desired impurity is ionized within the source and is then extracted
into the acceleration tube. After acceleration to the desired kinetic energy,
the ions are passed through a mass separator to ensure that only the
desired ion species enters the drift tube.! The ion beam is then focused and
scanned electrostatically over the surface of the wafer in the target chamber.
Repetitive scanning in a raster pattern provides exceptionally uniform dop-
ing of the wafer surface. The target chamber commonly includes automatic
wafer-handling facilities to speed up the process of implanting many wafers
per hour.

An obvious advantage of implantation is that it can be done at rela-
tively low temperatures; this means that doping layers can be implanted
without disturbing previously diffused regions. The ions can be blocked by
metal or photoresist layers; therefore, the photolithographic techniques
described in Section 5.1.6 can be used to define ion-implanted doping pat-
terns. Very shallow (tenths of a micron) and well-defined doping layers can
be achieved by this method. As we shall see in later chapters, many devices
require thin doping regions and may be improved by ion implantation tech-
niques. Furthermore, it is possible to implant impurities which do not diffuse
conveniently into semiconductors.

One of the major advantages of implantation is the precise control of
doping concentration it provides. Since the ion beam current can be mea-
sured accurately during implantation, a precise quantity of impurity can be
introduced. This control over doping level, along with the uniformity of the
implant over the wafer surface, make ion implantation particularly attractive
for the fabrication of Si integrated circuits (Chapter 9).

One problem with this doping method is the lattice damage which
results from collisions between the ions and the lattice atoms. However,

!In many ion implanters the mass separation occurs before the ions are accelerated to high energy.
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most of this damage can be removed in Si by heating the crystal after the
implantation. This process is called annealing. Although Si can be heated to
temperatures in excess of 1000°C without difficulty, GaAs and some other
compounds tend to dissociate at high temperatures. For example, As evap-
oration from the surface of GaAs during annealing damages the sample.
Therefore, it is common to encapsulate the GaAs with a thin layer of silicon
nitride during the anneal. Another approach to annealing either Si or com-
pounds is to heat the sample only briefly (e.g., 10 s) using RTP, rather than a
conventional furnace. Annealing leads to some unintended diffusion of the
implanted species. It is desirable to minimize this diffusion by optimizing
the annealing time and temperature. The profile after annealing is given by

_ b 1= R
M) = @(ARﬁ + 2Dr)'/? eXp{_2<AR§ + 2Dt>} (5-1b)

5.1.5 Chemical Vapor Deposition (CVD)

At various stages of device fabrication, thin films of dielectrics, semiconduc-
tors and metals have to be formed on the wafer and then patterned and
etched. We have already discussed one important example of this involv-
ing thermal oxidation of Si. SiO, films can also be formed by low pressure
(~100 mTorr)? chemical vapor deposition (LPCVD) (Fig. 5-6) or plasma-
enhanced CVD (PECVD). The key differences are that thermal oxidation
consumes Si from the substrate, and very high temperatures are required,
whereas CVD of SiO, does not consume Si from the substrate and can be
done at much lower temperatures. The CVD process reacts a Si-containing
gas such as SiH, with an oxygen-containing precursor, causing a chemical
reaction, leading to the deposition of SiO, on the substrate. Being able to
deposit SiO, is very important in certain applications. As a complicated
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Figure 5-7a
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device structure is built up, the Si substrate may not be available for reac-
tion, or there may be metallization on the wafer that cannot withstand very
high temperatures. In such cases, CVD is a necessary alternative.

Although we have used deposition of SiO, as an important example,
LPCVD is also widely used to deposit other dielectrics such as silicon nitride
(Si3Ny), and polycrystalline or amorphous Si. It should also be clear that the
VPE of Si or MOCVD of compound semiconductors discussed in Chapter 1
is really a special, more challenging example of CVD where not only must a
film be deposited, but single-crystal growth must also be maintained.

5.1.6 Photolithography

Patterns corresponding to complex circuitry are formed on a wafer using
photolithography. This involves first generating a reticle which is a transpar-
ent silica (quartz) plate containing the pattern (Fig. 5-7a). Opaque regions
on the mask are made up of an ultraviolet (UV) light-absorbing layer, such
as iron oxide. The reticle typically contains the patterns corresponding to
a single chip or die, rather than the entire wafer (in which case it would
be called a mask). It is usually created by a computer-controlled electron
beam driven by the circuit layout data, using pattern generation software. A
thin layer of electron beam sensitive material called electron beam resist is
placed on the iron-oxide—covered quartz plate, and the resist is exposed by
the electron beam. A resist is a thin organic polymer layer that undergoes
chemical changes if it is exposed to energetic particles such as electrons
or photons. The resist is exposed selectively, corresponding to the patterns
that are required. After exposure, the resist is developed in a chemical solu-
tion. There are two types of resist. The developer is used to remove either
the exposed (positive resist) or the unexposed (negative resist) material.
The iron oxide layer is then selectively etched off in a plasma to generate the
appropriate patterns. The reticle can be used repeatedly to pattern Si wafers.
To make a typical integrated circuit, a dozen or more reticles are required,
corresponding to different process steps.
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The Si wafers are first covered with an UV light-sensitive organic mate-
rial or photoemulsion called photoresist by dispensing the liquid resist onto
the wafer and spinning it rapidly (~3000 rpm) to form a uniform coating
(~0.5 pm). As mentioned above, there are two types of resist—negative,
which forms the opposite polarity image on the wafer compared to that on the
reticle, and positive (same polarity). Currently, positive resist has supplanted
negative because it can achieve far better resolution, down to ~0.25 pm
using UV light. The light shines on the resist-covered wafer through the
reticle, causing the exposed regions to become acidified. Subsequently,
the exposed wafers are developed in a basic solution of NaOH, which causes
the exposed resist to etch away. Thereby, the pattern on the reticle is trans-
ferred to the die on the wafer. After the remaining resist is cured by baking at
~125°Cin order to harden it, the appropriate process step can be performed,
such as implanting dopants through windows in the resist pattern or plasma
etching of the underlying layers.

The exposure of the wafers is achieved die-by-die in a step-and-repeat
system called a stepper (Fig. 5-7b). As the name implies, the UV light shines
selectively through the reticle onto a single die location. After the photoex-
posure is done, the wafer mechanically translates on a precisely controlled
x-y translation stage to the next die location and is exposed again. It is very
important to be able to precisely align the patterns on the reticle with respect
to pre-existing patterns on the wafer, which is why these tools are also some-
times known as mask aligners. An advantage of such a “stepper” projection
system is that refocusing and realignment can be done at each die to accom-
modate slight variations in surface flatness across the wafer. This is especially
important in printing ultra-small linewidths over a very large wafer. The
success of modern IC manufacture has depended on numerous advances in
deep UV light sources, precision optical projection systems, techniques for
registration between masking layers, and stepper design.

What makes photolithography (along with etching) so critical is that it
obviously determines how small and closely packed the individual devices
(e.g., transistors) can be made. We shall see that smaller devices operate
better in terms of higher speed and lower power dissipation. What makes
modern lithography so challenging is the fact that pattern dimensions are
comparable to the wavelength of light that is used. Under these circum-
stances we cannot treat light propagation using simple geometrical ray
optics; rather, the wave nature of light is manifested in terms of diffraction,
which makes it harder to control the patterns. The diffraction-limited mini-
mum geometry is given by

Ly = 0.8 A/NA (5-2a)

where A is the wavelength of the light and NA (~0.5) is the numerical
aperture or “size” of the lens used in the aligner. This expression implies
that for finer patterns, we should work with larger (and, therefore, more
expensive) lenses and shorter wavelengths. As a result, smaller geometries
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Figure 5-7b
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require shorter wavelengths. This has led the push to replace UV mercury
lamp sources (0.365 pm), shown in Fig. 5-7b, with argon fluoride (ArF)
excimer lasers (A = 0.193 wm). Novel exposure techniques employing
phase-shift masks, optical proximity correction, and off-axis illumination all
exploit Fourier optics to allow resolution near or below the dimension of the
wavelength being used. There is also interest in extreme ultraviolet (EUV)
sources (13 nm), which use a plasma to generate such short wavelengths,
for next-generation lithography. X-ray lithography involving even shorter
wavelengths has been the source of much research for many years, but does
not seem practical in a manufacturing environment. A promising advance-
ment involves imprinting patterns in a photoresist using a physical pattern,
or mold, thereby overcoming the diffraction limits of optical lithography.
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The other key parameter in lithography is the so-called depth-of-focus
(DOF), which is given by

A

DOF = —-—
2(NA)?

(5-2b)

The DOF tells us the range of distances around the focal plane where the
image quality is sharp. Unfortunately, this expression implies that expo-
sure with very short wavelengths leads to poor DOF. This is a big challenge
because the topography or the “hills and valleys” on a chip during processing
can be larger than the DOF allowed by the optics.

We must therefore add steps in the fabrication process to planarize the
surface using chemical mechanical polishing (CMP). As the name implies,
the planarizing process is partly chemical in nature (using a basic solution),
and partly mechanical grinding of the layers using an abrasive slurry. As
described in Section 1.3.3, CMP can be achieved using a slurry of fine SiO,
particles in an NaOH solution.

The expression for diffraction-limited geometry [Eq. (5-2a)] explains
why there is interest in electron beam lithography. The de Broglie relation
states that the wavelength of a particle varies inversely with its momentum:

A== (5-2¢)

Thus, more massive or energetic particles have shorter wavelengths.
Electron beams are easily generated, focused, and deflected. Since a 10-keV
electron has a wavelength of about 0.1 A, the linewidth limits become the
size of the focused beam and its interaction with the photoresist layer. It is
possible to achieve linewidths of 0.1 um by direct electron-beam writing on
the wafer photoresist. Furthermore, the computer-controlled electron-beam
exposure requires no masks. This capability allows extremely dense pack-
ing of circuit elements on the chip, but direct writing of complex patterns is
slow. Because of the time required for electron-beam wafer exposure, it is
usually advantageous to use electron-beam writing to make the reticle (Fig.
5-7a) and then to expose the wafer photoresist by using photons. Another
approach being considered is electron projection lithography (EPL), using
a mask, instead of steering a focused electron beam, in order to solve the
throughput problem.

5.1.7 Etching

After the photoresist pattern is formed, it can be used as a mask to etch the
material underneath. In the early days of Si technology, etching was done
using wet chemicals. For example, dilute HF can be used to etch SiO, layers
grown on a Si substrate with excellent selectivity. The term selectivity here
refers to the fact that HF attacks SiO,, but does not affect the Si substrate
underneath or the photoresist mask. Although many wet etches are selective,
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they are unfortunately isotropic, which means that they etch as fast laterally
as they etch vertically. This is unacceptable for ultra-small features. Hence,
wet etching has been largely supplanted by dry, plasma-based etching which
can be made both selective and anisotropic (etches vertically but not laterally
along the surface). In modern IC processing the main use of wet chemical
processing is in cleaning the wafers.

Plasmas are ubiquitous in IC processing. The most popular type of
plasma-based etching is known as reactive ion etching (RIE) (Fig. 5-8).In a
typical process, appropriate etch gases such as chlorofluorocarbons (CFCs)
flow into the chamber at reduced pressure (~1—100 mTorr), and a plasma
is struck by applying an rf voltage across a cathode and an anode. The rf
voltage accelerates the light electrons in the system to much higher kinetic
energies (~10 eV) than the heavier ions. The high-energy electrons collide
with neutral atoms and molecules to create ions and molecular fragments
called radicals. The wafers are held on the rf powered cathode, while the
grounded chamber walls act as the anode. From a study of plasma physics,
we can show that although the bulk of the plasma is a highly conducting,
equi-potential region, less conducting sheath regions form next to the two
electrodes. It can also be shown that the sheath voltage next to the cathode
can be increased by making the (powered) cathode smaller in area than the
(grounded) anode. A high d-c voltage (~100—1000 V) develops across the
sheath next to the rf powered cathode, such that positive ions gain kinetic
energy by being accelerated in this region, and bombard the wafer normal
to the surface. This bombardment at normal incidence contributes a physical
component to the etch that makes it anisotropic. Physical etching, however,
is rather unselective. Simultaneously, the highly reactive radicals in the sys-
tem give rise to a chemical etch component that is very selective, but not
anisotropic. The result is that RIE achieves a good compromise between
anisotropy and selectivity, and has become the mainstay of modern IC etch
technology.

Plasma
radicals &
_ ions L
Etch gas — 1 1 _— Pump
I— —I "~ Anode (chamber)
L
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5.1.8 Metallization

After the semiconductor devices are made by the processing methods
described previously, they have to be connected to each other, and ultimately
to the IC package, by metallization. Metal films are generally deposited by a
physical vapor deposition technique such as evaporation (e.g., Au on GaAs)
or sputtering (e.g., Al on Si). Sputtering of Al is achieved by immersing an Al
target (typically alloyed with ~1% Si and ~4% Cu to improve the electrical
and metallurgical properties of the Al, as described in Section 9.3.1) in an
Ar plasma. Argon ions bombard the Al and physically dislodge Al atoms by
momentum transfer (Fig. 5-9). Many of the Al atoms ejected from the target
deposit on the Si wafers held in close proximity to the target. The Al is then
patterned using the metallization reticle and subsequently etched by RIE.
Finally, it is sintered at ~450°C for ~30 minutes to form a good electrical,
ohmic contact to the Si.

Recently, for Siintegrated circuits, there has been a shift from Al to lower
resistivity Cu metallization. Copper cannot be deposited by sputtering. Instead,
it is electroplated on the chips. Copper metallization introduces special chal-
lenges because Cu diffuses fast in Si, and acts as a deep trap. Hence, prior to the
electroplating of Cu, a barrier metal such as Ti is first sputter deposited to block
Cu diffusion into Si. The Ti also acts as a seed layer for Cu electrodeposition.

After the interconnection metallization is complete, a protective over-
coat of silicon nitride is deposited using plasma-enhanced CVD. Then the
individual integrated circuits can be separated by sawing or by scribing and
breaking the wafer. The final steps of the process are mounting individual
devices in appropriate packages and connecting leads to the Al contact
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Aluminum sputtering by Ar" ions. The Ar* ions with energies of ~1-3 keV physically dislodge Al atoms
which end up depositing on the Si wafers held in close proximity. The chamber pressures are kept low
such that the mean free path of the ejected Al atoms is long compared to the targetto-wafer separation.
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Simplified description of steps in the fabrication of p-n junctions. For simplicity, only four diodes per
wafer are shown, and the relative thicknesses of the oxide, PR, and the Al layers are exaggerated.

regions. Very precise lead bonders are available for bonding Au or Al wire
(about one thousandth of an inch in diameter) to the device and then to the
package leads. This phase of device fabrication is called back-end processing,
and is discussed in more detail in Chapter 9.

The main steps in making p-n junctions using some of these unit processes
are illustrated in Fig. 5-10. Similarly, we will discuss how the key semiconduc-
tor devices are made using these same unit processes in subsequent chapters.

5.2
EQUILIBRIUM
CONDITIONS

In this chapter we wish to develop both a useful mathematical description
of the p-n junction and a strong qualitative understanding of its properties.
There must be some compromise in these two goals, since a complete math-
ematical treatment would obscure the essentially simple physical features
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of junction operation, while a completely qualitative description would not
be useful in making calculations. The approach, therefore, will be to describe
the junction mathematically while neglecting small effects which add little
to the basic solution. In Section 5.6 we shall include several deviations from
the simple theory.

The mathematics of p-n junctions is greatly simplified for the case of
the step junction, which has uniform p doping on one side of a sharp junction
and uniform n doping on the other side. This model represents epitaxial junc-
tions quite well; diffused or implanted junctions, however, are actually graded
(N, — N, varies over a significant distance on either side of the junction).
After the basic ideas of junction theory are explored for the step junction,
we can make the appropriate corrections to extend the theory to the graded
junction. In these discussions we shall assume one-dimensional current flow
in samples of uniform cross-sectional area.

In this section we investigate the properties of the step junction at
equilibrium (i.e., with no external excitation and no net currents flowing in
the device). We shall find that the difference in doping on each side of the
junction causes a potential difference between the two types of material. This
is a reasonable result, since we would expect some charge transfer because
of diffusion between the p material (many holes) and the n material (many
electrons). In addition, we shall find that there are four components of cur-
rent which flow across the junction due to the drift and diffusion of electrons
and holes. These four components combine to give zero net current for the
equilibrium case. However, the application of bias to the junction increases
some of these current components with respect to others, giving net current
flow. If we understand the nature of these four current components, a sound
view of p-n junction operation, with or without bias, will follow.

5.2.1 The Contact Potential

Let us consider separate regions of p- and n-type semiconductor material,
brought together to form a junction (Fig. 5-11). This is not a practical way
of forming a device, but this “thought experiment” does allow us to discover
the requirements of equilibrium at a junction. Before they are joined, the n
material has a large concentration of electrons and few holes, whereas the
converse is true for the p material. Upon joining the two regions (Fig. 5-11),
we expect diffusion of carriers to take place because of the large carrier con-
centration gradients at the junction. Thus holes diffuse from the p side into
the n side, and electrons diffuse from n to p. The resulting diffusion current
cannot build up indefinitely, however, because an opposing electric field is
created at the junction (Fig. 5-11b). If the two regions were boxes of red air
molecules and green molecules (perhaps due to appropriate types of pol-
lution), eventually there would be a homogeneous mixture of the two after
the boxes were joined. This cannot occur in the case of the charged particles
in a p-n junction because of the development of space charge and the elec-
tric field €. If we consider that electrons diffusing from n to p leave behind
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uncompensated® donor ions (N) in the n material, and holes leaving the p
region leave behind uncompensated acceptors (N,), it is easy to visualize
the development of a region of positive space charge near the n side of the
junction and negative charge near the p side. The resulting electric field is
directed from the positive charge toward the negative charge. Thus € is in the
direction opposite to that of diffusion current for each type of carrier (recall
electron current is opposite to the direction of electron flow). Therefore, the

3We recall that neutrality is maintained in the bulk materials of Fig. 5-11a by the presence of one electron
for each ionized donor (n = NJ) in the n material and one hole for each ionized acceptor (p = N;) in
the p material (neglecting minority carriers). Thus, if electrons leave n, some of the positive donor ions near
the junction are left uncompensated, as in Fig. 5-11b. The donors and acceptors are fixed in the lattice, in
contrast to the mobile electrons and holes.
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field creates a drift component of current from n to p, opposing the diffusion
current (Fig. 5-11c).

Since we know that no net current can flow across the junction at equi-
librium, the current due to the drift of carriers in the € field must exactly
cancel the diffusion current. Furthermore, since there can be no net buildup
of electrons or holes on either side as a function of time, the drift and diffu-
sion currents must cancel for each type of carrier:

J(drift) + J(dift) = 0 (5-3a)
J,(drift) + J,(diff.)

0 (5-3b)

Therefore, the electric field € builds up to the point where the net current
is zero at equilibrium. The electric field appears in some region W about
the junction, and there is an equilibrium potential difference V|, across W.
In the electrostatic potential diagram of Fig. 5-11b, there is a gradient in
potential in the direction opposite to €, in accordance with the fundamental
relation® €(x) = —d V' (x) /dx. We assume the electric field is zero in the
neutral regions outside W.Thus there is a constant potential ', in the neutral
n material, a constant ¥, in the neutral p material, and a potential difference
Vo =V, — ¥, between the two. The region Wis called the transition region,’
and the potential difference V) is called the contact potential. The contact
potential appearing across W is a built-in potential barrier, in that it is nec-
essary to the maintenance of equilibrium at the junction; it does not imply
any external potential. Indeed, the contact potential cannot be measured by
placing a voltmeter across the devices, because new contact potentials are
formed at each probe, just canceling V. By definition V|, is an equilibrium
quantity, and no net current can result from it.

The contact potential separates the bands as in Fig. 5-11b; the valence
and conduction energy bands are higher on the p side of the junction than
on the n side® by the amount gV, The separation of the bands at equilibrium
is just that required to make the Fermi level constant throughout the device.
We discussed the lack of spatial variation of the Fermi level at equilibrium
in Section 3.5. Thus if we know the band diagram, including E, for each
separate material (Fig. 5-11a), we can find the band separation for the junc-
tion at equilibrium simply by drawing a diagram such as Fig. 5-11b with the
Fermi levels aligned.

“When we write €(x), we refer to the value of ¢ as computed in the x-direction. This value will of course
be negative, since it is directed opposite to the true direction of ¢ as shown in Fig. 5-11b.

5Other names for this region are the space charge region, since space charge exists within W while
neutrality is maintained outside this region, and the depletion region, since W is almost depleted of
carriers compared with the rest of the crystal. The contact potential V;, is also called the diffusion potential,
since it represents a potential barrier which diffusing carriers must surmount in going from one side of the
junction to the other.

%The electron energy diagram of Fig. 5-11b is related fo the electrostatic potential diagram by —g, the
negative charge on the electron. Since /', is a higher potential than 9", by the amount Vj, the electron
energies on the n side are lower than those on the p side by qV;.
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To obtain a quantitative relationship between V| and the doping con-
centrations on each side of the junction, we must use the requirements for
equilibrium in the drift and diffusion current equations. For example, the
drift and diffusion components of the hole current just cancel at equilibrium:

_ dp(x) | _
Jp(x) =q p‘pp(x)%(x) - Dp dx - (5743)
This equation can be rearranged to obtain
Hp 1 dp(x)
—¢(x) = —— 5-4t
D, (x) 200 dx (5-4b)

where the x-direction is arbitrarily taken from p to n. The electric field can
be written in terms of the gradient in the potential, €(x) = —d¥'(x)/dx, so
that Eq. (5-4b) becomes

g dV(x) 1 dp(x)
kT dx  p(x) dx

(5-5)

with the use of the Einstein relation for w,/D,. This equation can be solved
by integration over the appropriate limits. In this case we are interested in
the potential on either side of the junction, V', and V", and the hole concen-
tration just at the edge of the transition region on either side, p, and p,.. For
a step junction it is reasonable to take the electron and hole concentration in
the neutral regions outside the transition region as their equilibrium values.
Since we have assumed a one-dimensional geometry, p and V' can be taken
reasonably as functions of x only. Integration of Eq. (5-5) gives

Vi D

q 1

e AV = —d
kT ¥ /p P

P

q Pn
—V, =V, =1 -1 = In— 5-6
X v, p) np, np, np,, (5-6)

The potential difference V', — ¥, is the contact potential V; (Fig. 5-11b).
Thus we can write V|, in terms of the equilibrium hole concentrations on
either side of the junction:
kT  Dp
Vo=—In— 5-7

0=y (5-7)

If we consider the step junction to be made up of material with N,

acceptors/cm’ on the p side and a concentration of N, donors on the n side,
we can write Eq. (5-7) as

kT N, kT NN,

Vo= —In = n
0 q ”,'Z/Nd q n;

(5-8)
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by considering the majority carrier concentration to be the doping concen-
tration on each side.
Another useful form of Eq. (5-7) is

p—p = e(IVo/kT (579)

Pn

By using the equilibrium condition p,n, = nj = p,n,, we can extend Eq. (5-9)
to include the electron concentrations on either side of the junction:

Py _n, -
p—” == e (5-10)
n P

This relation will be very valuable in calculation of the /-V characteristics
of the junction.

An abrupt Si p-n junction has N, = 10®¥cm™ on one side and  EXAMPLE 5-1
N, = 5 X 10%cm™ on the other.
(a) Calculate the Fermi level positions at 300 K in the p and n regions.

(b) Draw an equilibrium band diagram for the junction and determine
the contact potential V), from the diagram.

(c) Compare the results of part (b) with V, as calculated from Eq. (5-8).
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p L0t SOLUTION
P
(a) Eip - EF = lel‘l;i = 0.0259 lnm = 0.467 eV
n, 5 % 109
Ep — Ej, = kTIn— = 0.0259 In ———— = 0.329 eV
n; (15 X 10 )
(b) gV, = 0.467 + 0.329 = 0.796 eV
N,N, 5 % 10%
(C) qVy = kT In nlz = 0.0259 lnm = 0.796 eV
E.p
0.796 eV
Eip Se——ro
0.467 eV Ecn
7777777777777777 Ep
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5.2.2 Equilibrium Fermi Levels

We have observed that the Fermi level must be constant throughout
the device at equilibrium. This observation can be easily related to the
results of the previous section. Since we have assumed that p, and p,
are given by their equilibrium values outside the transition region, we
can write Eq. (5-9) in terms of the basic definitions of these quantities
using Eq. (3-19):

—(En—E,)/KT
Po _ jqvar — Noe 0 (5-11a)
3 N, Er~E)/KT ‘
eIV/KT = o(Er=Ep) /KT o(Ey,~E) /KT (5-11b)
qVO = Evp - Evn (5712)

The Fermi level and valence band energies are written with subscripts to
indicate the p side and the n side of the junction.

From Fig. 5-11b the energy bands on either side of the junction are
separated by the contact potential V, times the electronic charge g; thus
the energy difference E,, — E,, is just ¢gV,. Equation (5-12) results from
the fact that the Fermi levels on either side of the junction are equal at
equilibrium (Eg, — Ep, = 0). When bias is applied to the junction, the
potential barrier is raised or lowered from the value of the contact poten-
tial, and the Fermi levels on either side of the junction are shifted with
respect to each other by an energy in electron volts numerically equal to
the applied voltage in volts.

5.2.3 Space Charge at a Junction

Within the transition region, electrons and holes are in transit from one side
of the junction to the other. Some electrons diffuse from n to p, and some
are swept by the electric field from p to n (and conversely for holes); there
are, however, very few carriers within the transition region at any given time,
since the electric field serves to sweep out carriers which have wandered
into W.To a good approximation, we can consider the space charge within
the transition region as due only to the uncompensated donor and acceptor
ions. The charge density within W is plotted in Fig. 5-12b. Neglecting carri-
ers within the space charge region, the charge density on the n side is just ¢q
times the concentration of donor ions N,, and the negative charge density
on the p side is —¢ times the concentration of acceptors N,. The assumption
of carrier depletion within W and neutrality outside W is known as the
depletion approximation.



Junctions

Charge density
aNg
(+) Q. = qAx, 0Ny
(b)
—Xp0 “) Xn0 X
—qN;
Q = 7([A')C/)[)Nél
&(x)
T
© ~Xpo Xno X
dé_ 1 16 _ 1
= (—aN,) =< @Na)
&g

Since the dipole about the junction must have an equal number of
charges on either side,” (Q, = | Q_|), the transition region may extend
into the p and n regions unequally, depending on the relative doping of the
two sides. For example, if the p side is more lightly doped than the n side
(N, < N,), the space charge region must extend farther into the p material
than into the n, to “uncover” an equivalent amount of charge. For a sample
of cross-sectional area A, the total uncompensated charge on either side of
the junction is

qAxX, N, = qAX,4 N, (5-13)
P

7A simple way of remembering this equal charge requirement is o note that electric flux lines must begin
and end on charges of opposite sign. Therefore, if Q, and Q_ were not of equal magnitude, the electric
field would not be contained within W but would extend farther into the p or n regions until the enclosed
charges became equal.
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Figure 5-12
Space charge
and electric field
distribution within
the transition
region of a p-n
junction with

Ny > Ng:

(a) the transition
region, with

x = 0 defined at
the metallurgical
junction;

(b) charge
density within the
transition region,
neglecting the free
carriers; (c) the
electric field
distribution, where
the reference
direction for

¢ is arbitrarily
taken as the
+x-direction.
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where x, is the penetration of the space charge region into the p material,
and x,, is the penetration into n. The total width of the transition region (W)
is the sum of x,, and x.

To calculate the electric field distribution within the transition region,
we begin with Poisson’s equation, which relates the gradient of the electric
field to the local space charge at any point x:

dé(x) q . ~
o e(p -n+ N; —N,) (5-14)

This equation is greatly simplified within the transition region if we neglect
the contribution of the carriers (p-n) to the space charge. With this approxi-
mation we have two regions of constant space charge:

dé q

o ZNd, 0<x<xy (5-15a)
aé _ q _

e eN”’ Xpo <x <0 (5-15b)

assuming complete ionization of the impurities (N, = N,) and (N, = N,).
We can see from these two equations that a plot of €(x) vs. x within the
transition region has two slopes, positive (¢ increasing with x) on the n side
and negative (¢ becoming more negative as x increases) on the p side. There
is some maximum value of the field €, at x = 0 (the metallurgical junction
between the p and n materials), and €(x) is everywhere negative within
the transition region (Fig. 5-12¢). These conclusions come from Gauss’s law,
but we could predict the qualitative features of Fig. 5-12 without equations.
We expect the electric field €(x) to be negative throughout W, since we
know that the € field actually points in the —x-direction, from n to p (i.e.,
from the positive charges of the transition region dipole toward the negative
charges). The electric field is assumed to go to zero at the edges of the tran-
sition region, since we are neglecting any small € field in the neutral n or p
regions. Finally, there must be a maximum € at the junction, since this point
is between the charges O, and Q _ on either side of the transition region.
All the electric flux lines pass through the x = 0 plane, so this is the obvious
point of maximum electric field.

The value of €, can be found by integrating either part of Eq. (5-15)
with appropriate limits (see Fig. 5-12c in choosing the limits of integration).

0 X0
/ as =N, / dx, 0<x<x, (5-16a)
3 € 0
0
%, q 0
/ dé = —;Na dx, —x,0<x<0 (5-16b)
0 —Xp0
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Therefore, the maximum value of the electric field is
q q
%0 = _ENdan = _ENaxpO (5717)

It is simple to relate the electric field to the contact potential V), since
the € field at any x is the negative of the potential gradient at that point:

E(x) = —dogix) or —V, = / " (o) (5-18)

X0

Thus the negative of the contact potential is simply the area under the €(x) vs.
x triangle. This relates the contact potential to the width of the depletion region:
1q

1
VO = _E%OW == EszanW (5*19)

Since the balance of charge requirement is x,,(N,; = x,0N,, and W is simply
X, + X, We can write x,,0 = WN,/(N, + N,) in Eq. (5-19):
_1q NN

V, =
" 2eN,+ N,

w2 (5-20)

By solving for W, we have an expression for the width of the transi-
tion region in terms of the contact potential, the doping concentrations, and
known constants g and €

2eVy( N, + N\ 1'/? 2eV, 12
- BRG] e
q NaNd q Na Nd
There are several useful variations of Eq. (5-21); for example, V|, can
be written in terms of the doping concentrations with the aid of Eq. (5-8):

2ekT( NN,/ 1 ~ 1\]7
W= [ < <ln - ”’X + )} (5-22)
q n; Na Nd
We can also calculate the penetration of the transition region into the n and
p materials:

. WNd - w B ZEVO[ Nd 1/2 .
X = — = (5-23a)
v Na + Nd 1+ Na/Nd q LNa(Ncl + Nd)
WN, 2eV, N, 172
g = W _ { € 0{ a H (5-23b)
N,+N, 1+ N,/N, q | NiN,+ N,

As expected, Egs. (5-23) predict that the transition region extends far-
ther into the side with the lighter doping. For example, if N, < Ny, x, is
large compared with x,,,. This agrees with our qualitative argument that a
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deep penetration is necessary in lightly doped material to “uncover” the same
amount of space charge as for a short penetration into heavily doped material.

Another important result of Eq. (5-21) is that the transition width W
varies as the square root of the potential across the region. In the derivation
to this point, we have considered only the equilibrium contact potential V.
In Section 5.3 we shall see that an applied voltage can increase or decrease
the potential across the transition region by aiding or opposing the equilib-
rium electric field. Therefore, Eq. (5-21) predicts that an applied voltage will
increase or decrease the width of the transition region as well.

EXAMPLE 5-2 The junction described in Example 5-1 has a circular cross section with a
diameter of 10 um. Calculate x,,, x,0, O+, and €, for this junction at equi-
librium (300 K). Sketch €(x) and charge density to scale, as in Fig. 5-12.

SOLUTION A =75 %1042 = 7.85 X 107 cm?

{26110( 1 1 )]1/2
W = — e —
q Na Nd

2(11.8)(8.85 X 107%)(0.796 1/2
- [ = 1.6 X 1019)( )(10*18 +2x 10| = 0.457pm
w 0.457
= = = 0.455
T 1¥N,/N, 1+5x107 =
0.457
= — = . X -3
X = T 200 2.27 X 10°pm

0. = qAx, N, = qAx, N, = (1.6 X 107)(7.85 x 107")(2.27 x 10")
2.85 X 10 “C

q q 1.6 X 107"
07 TN T TN T 11 8)(8.85 x 107

= —3.48 X 10°V /cm

(227 x 10

p(x) €

5% 100 ¢

0.5 0.5
L

x (pm) L x (pm)

{ —10'%¢ —3.48 x 10*
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One useful feature of a p-n junction is that current flows quite freely in the
p to n direction when the p region has a positive external voltage bias relative
to n (forward bias and forward current), whereas virtually no current flows
when p is made negative relative to n (reverse bias and reverse current).
This asymmetry of the current flow makes the p-n junction diode very use-
ful as a rectifier. While rectification is an important application, it is only the
beginning of a host of uses for the biased junction. Biased p-n junctions can
be used as voltage-variable capacitors, photocells, light emitters, and many
more devices which are basic to modern electronics. Two or more junctions
can be used to form transistors and controlled switches.

In this section we begin with a qualitative description of current flow
in a biased junction. With the background of the previous section, the basic
features of current flow are relatively simple to understand, and these quali-
tative concepts form the basis for the analytical description of forward and
reverse currents in a junction.

5.3.1 Quadlitative Description of Current Flow at a Junction

We assume that an applied voltage bias V appears across the transition
region of the junction rather than in the neutral n and p regions. Of course,
there will be some voltage drop in the neutral material, if a current flows
through it. But in most p-n junction devices, the length of each region is small
compared with its area, and the doping is usually moderate to heavy; thus
the resistance is small in each neutral region, and only a small voltage drop
can be maintained outside the space charge (transition) region. For almost
all calculations it is valid to assume that an applied voltage appears entirely
across the transition region. We shall take V' to be positive when the external
bias is positive on the p side relative to the n side.

Since an applied voltage changes the electrostatic potential barrier and
thus the electric field within the transition region, we would expect changes
in the various components of current at the junction (Fig. 5-13). In addition,
the separation of the energy bands is affected by the applied bias, along
with the width of the depletion region. Let us begin by examining qualita-
tively the effects of bias on the important features of the junction.

The electrostatic potential barrier at the junction is lowered by a for-
ward bias V,from the equilibrium contact potential V to the smaller value
Vi, — V,.'This lowering of the potential barrier occurs because a forward bias
(p positive with respect to n) raises the electrostatic potential on the p side
relative to the n side. For a reverse bias (V = —V,) the opposite occurs; the
electrostatic potential of the p side is depressed relative to the n side, and the
potential barrier at the junction becomes larger (V,, + V,).

The electric field within the transition region can be deduced from the
potential barrier. We notice that the field decreases with forward bias, since
the applied electric field opposes the built-in field. With reverse bias the field
at the junction is increased by the applied field, which is in the same direction
as the equilibrium field.

The change in electric field at the junction calls for a change in the transi-
tion region width W, since it is still necessary that a proper number of positive
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Effects of a bias at a p-n junction; transition region width and electric field, electrostatic potential, energy
band diagram, and particle flow and current directions within W for (a) equilibrium, (b) forward bias,

and (c) reverse bias. The electric fields vary linearly with position, as shown in Fig. 5-12, if the doping
concentrations in the depletion regions are constant on either side of the junction. Since the electrostatic
potential is obtained by integrating the (linearly varying) electric fields as shown in Eq. (5-18), the potential
profiles (and band edges) vary as the square of distance from the depletion edges. Therefore, the shape of
the band diagram in the depletion region is not linear, but consists of two parabolic curves that join smoothly.



Junctions

and negative charges (in the form of uncompensated donor and acceptor ions)
be exposed for a given value of the € field. Thus we would expect the width
W to decrease under forward bias (smaller €, fewer uncompensated charges)
and to increase under reverse bias. Equations (5-21) and (5-23) can be used to
calculate W, x,, and x, if V| is replaced by the new barrier height® vV, — V.

The separation of the energy bands is a direct function of the electro-
static potential barrier at the junction. The height of the electron energy
barrier is simply the electronic charge g times the height of the electrostatic
potential barrier. Thus the bands are separated less [q(V,, — V)] under for-
ward bias than at equilibrium, and more [g(V, + V,)] under reverse bias.
We assume the Fermi level deep inside each neutral region is essentially the
equilibrium value (we shall return to this assumption later); therefore, the
shifting of the energy bands under bias implies a separation of the Fermi
levels on either side of the junction, as mentioned in Section 5.2.2. Under
forward bias, the Fermi level on the n side Ep, is above Ep, by the energy gV/;
for reverse bias, Er, is gV, joules higher than Ep,. In energy units of electron
volts, the Fermi levels in the two neutral regions are separated by an energy
(eV) numerically equal to the applied voltage (V).

The diffusion current is composed of majority carrier electrons on the
n side surmounting the potential energy barrier to diffuse to the p side, and
holes surmounting their barrier from p to n.’ There is a distribution of energies
for electrons in the n-side conduction band (Fig. 3-16), and some electrons
in the high-energy “tail” of the distribution have enough energy to diffuse
from n to p at equilibrium in spite of the barrier. With forward bias, however,
the barrier is lowered (to V;, — V), and many more electrons in the n-side
conduction band have sufficient energy to diffuse from n to p over the smaller
barrier. Therefore, the electron diffusion current can be quite large with for-
ward bias. Similarly, more holes can diffuse from p to n under forward bias
because of the lowered barrier. For reverse bias the barrier becomes so large
(Vy + V,) that virtually no electrons in the n-side conduction band or holes
in the p-side valence band have enough energy to surmount it. Therefore, the
diffusion current is usually negligible for reverse bias.

The drift current is relatively insensitive to the height of the potential
barrier. This sounds strange at first, since we normally think in terms of mate-
rial with ample carriers, and therefore we expect drift current to be simply
proportional to the applied field. The reason for this apparent anomaly is the
fact that the drift current is limited not by how fast carriers are swept down
the barrier, but rather how often. For example, minority carrier electrons on
the p side which wander into the transition region will be swept down the

8With bias applied to the junction, the O in the subscripts of x,o and x. does not imply equilibrium. Instead,
it signifies the origin of a new set of coordinates, x, = 0 and x, = 0, as defined lafer in Fig. 5-15.

“Remember that the potential energy barriers for electrons and holes are directed oppositely. The barrier

for electrons is apparent from the energy band diagram, which is always drawn for electron energies. For
holes, the potential energy barrier at the junction has the same shape as the electrostatic potential barrier
(the conversion factor between electrostatic potential and hole energy is +q). A simple check of these two
barrier directions can be made by asking the directions in which carriers are swept by the € field within the
transition region—a hole is swept in the direction of €, from n to p (swept down the potential “hill” for holes);
an electron is swept opposite to €, from p to n (swept down the potential energy “hill” for electrons).
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barrier by the € field, giving rise to the electron component of drift current.
However, this current is small not because of the size of the barrier, but because
there are very few minority electrons in the p side to participate. Every elec-
tron on the p side which diffuses to the transition region will be swept down
the potential energy hill, whether the hill is large or small. The electron drift
current does not depend on how fast an individual electron is swept from p to
n, but rather on how many electrons are swept down the barrier per second.
Similar comments apply regarding the drift of minority holes from the n side
to the p side of the junction. To a good approximation, therefore, the electron
and hole drift currents at the junction are independent of the applied voltage.

The supply of minority carriers on each side of the junction required to
participate in the drift component of current is generated by thermal excitation
of electron-hole pairs (EHPs). For example, an EHP created near the junction
on the p side provides a minority electron in the p material. If the EHP is gener-
ated within a diffusion length L, of the transition region, this electron can diffuse
to the junction and be swept down the barrier to the n side. The resulting current
due to drift of generated carriers across the junction is commonly called the gen-
eration current since its magnitude depends entirely on the rate of generation of
EHPs. As we shall discuss later, this generation current can be increased greatly
by optical excitation of EHPs near the junction (the p-n junction photodiode).

The total current crossing the junction is composed of the sum of the
diffusion and drift components. As Fig. 5-13 indicates, the electron and hole
diffusion currents are both directed from p to n (although the particle flow
directions are opposite to each other), and the drift currents are from n to
p- The net current crossing the junction is zero at equilibrium, since the drift
and diffusion components cancel for each type of carrier (the equilibrium
electron and hole components need not be equal, as in Fig. 5-13, as long
as the net hole current and the net electron current are each zero). Under
reverse bias, both diffusion components are negligible because of the large
barrier at the junction, and the only current is the relatively small (and essen-
tially voltage-independent) generation current from n to p. This generation
current is shown in Fig. 5-14, in a sketch of a typical /-V plot for a p-n junc-
tion. In this figure the positive direction for the current / is taken from p to
n, and the applied voltage V is positive when the positive battery terminal
is connected to p and the negative terminal to n. The only current flowing
in this p-n junction diode for negative V is the small current I(gen.) due to
carriers generated in the transition region or minority carriers which diffuse
to the junction and are collected. The current at V = 0 (equilibrium) is zero
since the generation and diffusion currents cancel:'®

I = I(diff.) — |I(gen.)] = OforV =0 (5-24)

1%The total current [ is the sum of the generation and diffusion components. However, these components
are oppositely directed, with I(diff.) being positive and l[gen.) being negative for the chosen reference
direction. To avoid confusion of signs, we use here the magnitude of the drift current |/(gen.)| and
include its negative sign in Eq. (5-24). Thus, when we write the term —|/(gen.) |, there is no doubt that
the generation current is in the negative current direction. This approach emphasizes the fact that the two
components of current add with opposite signs to give the fotal current.
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v Figure 5-14
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As we shall see in the next section, an applied forward bias V = V,
increases the probability that a carrier can diffuse across the junction, by
the factor exp(qV;/kT). Thus the diffusion current under forward bias is
given by its equilibrium value multiplied by exp(qV/kT); similarly, for
reverse bias the diffusion current is the equilibrium value reduced by the
same factor, with V' = —V,. Since the equilibrium diffusion current is equal
in magnitude to |I(gen.)|, the diffusion current with applied bias is simply
| I(gen.) |exp(qV /kT). The total current I is then the diffusion current minus
the absolute value of the generation current, which we will now refer to as

I = Iy(e?* T — 1) (5-25)

In Eq. (5-25) the applied voltage V can be positive or negative,
V =VsorV = -V, When V is positive and greater than a few k7/q
(kT/q = 0.0259 V at room temperature), the exponential term is much
greater than unity. The current thus increases exponentially with forward
bias. When V is negative (reverse bias), the exponential term approaches
zero and the current is —/;, which is in the n to p (negative) direction. This
negative generation current is also called the reverse saturation current. The
striking feature of Fig. 5-14 is the nonlinearity of the /-V characteristic.
Current flows relatively freely in the forward direction of the diode, but
almost no current flows in the reverse direction.

5.3.2 Carrier Injection

From the discussion in the previous section, we expect the minority carrier
concentration on each side of a p-n junction to vary with the applied bias
because of variations in the diffusion of carriers across the junction. The
equilibrium ratio of hole concentrations on each side

i—” = VKT (5-26)
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becomes with bias (Fig. 5-13)

PCxp) _ Ve VI/KT (5-27)

p(xn())

This equation uses the altered barrier V, — V to relate the steady state
hole concentrations on the two sides of the transition region with either for-
ward or reverse bias (V positive or negative). For low-level injection we can
neglect changes in the majority carrier concentrations. Although the absolute
increase of the majority carrier concentration is equal to the increase of the
minority carrier concentration in order to maintain space charge neutrality,
the relative change in majority carrier concentration can be assumed to vary
only slightly with bias compared with equilibrium values. With this simplifi-
cation we can write the ratio of Eq. (5-26) to (5-27) as

p (xn())

P e?V/KT taking p(—x,0) = p, (5-28)

With forward bias, Eq. (5-28) suggests a greatly increased minority carrier
hole concentration at the edge of the transition region on the n side p(x,,)
than was the case at equilibrium. Conversely, the hole concentration p(x,,)
under reverse bias (V negative) is reduced below the equilibrium value p,,.
The exponential increase of the hole concentration at x,,, with forward bias is
an example of minority carrier injection. As Fig. 5-15 suggests, a forward bias
V results in a steady state injection of excess holes into the n region and elec-
trons into the p region. We can easily calculate the excess hole concentration
Ap, at the edge of the transition region x,, by subtracting the equilibrium
hole concentration from Eq. (5-28),

\Apn = p(x,0) = pp = pu(e”*" — 1)\ (5-29)

and similarly for excess electrons on the p side,

Ay = 0 x0) =y = @ =) | (5-30)

From our study of diffusion of excess carriers in Section 4.4.4, we
expect that injection leading to a steady concentration of Ap, excess holes
at x,,, will produce a distribution of excess holes in the n material. As the
holes diffuse deeper into the n region, they recombine with electrons in
the n material, and the resulting excess hole distribution is obtained as a
solution of the diffusion equation, Eq. (4-34b). If the n region is long com-
pared with the hole diffusion length L,, the solution is exponential, as in
Eq. (4-36). Similarly, the injected electrons in the p material diffuse and
recombine, giving an exponential distribution of excess electrons. For con-
venience, let us define two new coordinates (Fig. 5-15): Distances measured
in the x-direction in the n material from x,,, will be designated x,; distances
in the p material measured in the —x-direction with —x,, as the origin will
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Figure 5-15

Forward-biased junction: (a) minority carrier distributions on the two sides of the transition region and
definitions of distances x, and x, measured from the transition region edges; (b) variation of the quasi-
Fermi levels with position.

be called x,,. This convention will simplify the mathematics considerably. We
can write the diffusion equation as in Eq. (4-34) for each side of the junc-
tion and solve for the distributions of excess carriers (én and §p) assuming
long p and n regions:

’5n(xp) = An e/t = p (eV/KT — 1)e™5/

(5-31a)

8p(x,) = Apye/ln = p (T — el (5:31b)

The hole diffusion current at any point x, in the n material can be
calculated from Eq. (4-40):

dsp(x,)
dx,, -

DP —x,/L DP
quApne /= qATSP(xn) (5-32)

p P

Ip(xn) = _qADp

where A is the cross-sectional area of the junction. Thus the hole diffusion
current at each position x,, is proportional to the excess hole concentration at



212

Chapter 5

that point." The total hole current injected into the n material at the junction
can be obtained simply by evaluating Eq. (5-32) at x,,:

qAD

AD
! Do (T 1) (5-33)
L,

I(x, = 0) =

By a similar analysis, the injection of electrons into the p material leads
to an electron current at the junction of

AD, AD,
L(x, =0)= qL An, = qL n,(e?"*T — 1) (5-34)

The minus sign in Eq. (5-34) means that the electron current is opposite to
the x,-direction; that is, the true direction of I, is in the +x-direction, add-
ing to I, in the total current (Fig. 5-16). If we neglect recombination in the
transition region, which is known as the Shockley ideal diode approxima-
tion, we can consider that each injected electron reaching —x,, must pass
through x,,. Thus the total diode current / at x,, can be calculated as the
sum of /,(x, = 0) and —1,(x, = 0). If we take the +x-direction as the refer-
ence direction for the total current /, we must use a minus sign with 7,(x,) to
account for the fact that x,, is defined in the —x-direction:

L L

4 n

An

I=1,(x,=0)—I(x,=0)= )

(5-35)

DP D, V/kT V/kT
I=qA T put+ 1 (e?/KT — 1) = I(e?"/*T — 1) (5-36)
P n

Equation (5-36) is the diode equation, having the same form as the
qualitative relation Eq. (5-25). Nothing in the derivation excludes the pos-
sibility that the bias voltage V can be negative; thus the diode equation
describes the total current through the diode for either forward or reverse

bias. We can calculate the current for reverse bias by letting V = —V,:
D D
P n —
I = qA(LPP" + Lni’lp>(€ avi/kT _ 1) (573721)

If V. is larger than a few kT/q, the total current is just the reverse saturation
current

DP Dn
I = —qgA 7 P + M) = =1, (5-37b)

p n

"With carrier injection due to bias, it is clear that the equilibrium Fermi levels cannot be used to describe
carrier concentrations in the device. It is necessary to use the concept of quasi-Fermi levels, taking into
account the spatial variations of the carrier concentrations.
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One implication of Eq. (5-36) is that the total current at the junction
is dominated by injection of carriers from the more heavily doped side into
the side with lesser doping. For example, if the p material is very heavily
doped and the n region is lightly doped, the minority carrier concentration
on the p side (n,) is negligible compared with the minority carrier concen-
tration on the n side (p,,). Thus the diode equation can be approximated by
injection of holes only, as in Eq. (5-33). This means that the charge stored
in the minority carrier distributions is due mostly to holes on the n side. For
example, to double the hole current in this p*-n junction one should not
double the p* doping, but rather reduce the n-type doping by a factor of
two. This structure is called a p*-n junction, where the + superscript simply
means heavy doping. Another characteristic of the p*-n or n™-p structure is
that the transition region extends primarily into the lightly doped region, as
we found in the discussion of Eq. (5-23). Having one side heavily doped is a
useful arrangement for many practical devices, as we shall see in our discus-
sions of switching diodes and transistors. This type of junction is common in
devices which are fabricated by counterdoping. For example, an n-type Si
sample with N, = 10" cm™ can be used as the substrate for an implanted
or diffused junction. If the doping of the p region is greater than 10" cm ™3
(typical of diffused junctions), the structure is definitely p"-n, with n, more
than five orders of magnitude smaller than p,. Since this configuration is
common in device technology, we shall return to it in much of the following
discussion.

Figure 5-15b shows the quasi-Fermi levels as a function of position
for a p-n junction in forward bias. The equilibrium Eis split into the quasi-
Fermi levels F, and F, which are separated within W by an energy gV caused
by the applied bias, V. This energy represents the deviation from equilibrium
(see Section 4.3.3). In forward bias in the depletion region we thus get

pn = m2eEFIKT = p2plaV/KD) (5-38)

On either side of the junction, it is the minority carrier quasi-Fermi
level that varies the most. The majority carrier concentration is not affected
much, so the majority carrier quasi-Fermi level is close to the original E.
Although there is some variation in Ey and F, within W, it doesn’t show up
on the scale used in Fig. 5-15. Outside of the depletion regions, the quasi-
Fermi levels for the minority carriers vary linearly and eventually merge
with the Fermi levels. In contrast, the minority carrier concentrations decay
exponentially with distance. In fact it takes many diffusion lengths for the
quasi-Fermi level to cross E;, where the minority carrier concentration is
equal to the intrinsic carrier concentration, let alone approach E, where for
example ép(x,) = p,.

Another simple and instructive way of calculating the total current is
to consider the injected current as supplying the carriers for the excess dis-
tributions (Fig. 5-16b). For example, I,(x,, = 0) must supply enough holes
per second to maintain the steady state exponential distribution Ap(x,,) as
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the holes recombine. The total positive charge stored in the excess carrier
distribution at any instant of time is

o

Qp = qA/(; Bp(xn)dxn = qAApn/O e_x"/Lpdxn = qALpApn (57%9)

The average lifetime of a hole in the n-type material is 7,. Thus, on the
average, this entire charge distribution recombines and must be replenished
every 7, seconds. The injected hole current at x, = 0 needed to maintain
the distribution is simply the total charge divided by the average time of
replacement:

0 L D
L(x, = 0) = —* = gA_"Ap, = AT "Ap, (5-40)
p

p P

using D,/L, = L,/7,.

This is the same result as Eq. (5-33), which was calculated from the
diffusion currents. Similarly, we can calculate the negative charge stored in
the distribution én(x,) and divide by 7, to obtain the injected electron cur-
rent in the p material. This method, called the charge control approxima-
tion, illustrates the important fact that the minority carriers injected into
either side of a p-n junction diffuse into the neutral material and recombine
with the majority carriers. The minority carrier current [for example, 7,(x,,)]
decreases exponentially with distance into the neutral region. Thus several
diffusion lengths away from the junction, most of the total current is carried
by the majority carriers. We shall discuss this point in more detail later in
this section.

In summary, we can calculate the current at a p-n junction in two ways
(Fig. 5-16): (a) from the slopes of the excess minority carrier distributions at
the two edges of the transition regions and (b) from the steady state charge
stored in each distribution. We add the hole current injected into the n mate-
rial /,(x, = 0) to the electron current injected into the p material /,(x, = 0),
after including a minus sign with 7,(x,) to conform with the conventional defi-
nition of positive current in the +x-direction. We are able to add these two
currents because of the assumption that no recombination takes place within
the transition region. Thus we effectively have the total electron and hole cur-
rent at one point in the device (x,,). Since the total current must be constant
throughout the device (despite variations in the current components), I as
described by Eq. (5-36) is the total current at every position x in the diode.

The drift of minority carriers can be neglected in the neutral regions
outside W, because the minority carrier concentration is small compared with
that of the majority carriers. If the minority carriers contribute to the total
current at all, their contribution must be through diffusion (dependent on
the gradient of the carrier concentration). Even a very small concentration of
minority carriers can have an appreciable effect on the current if the spatial
variation is large.

215
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Calculation of the majority carrier currents in the two neutral regions
is simple, once we have found the minority carrier current. Since the total
current / must be constant throughout the device, the majority carrier com-
ponent of current at any point is just the difference between I and the minor-
ity component (Fig. 5-17). For example, since /,(x,) is proportional to the
excess hole concentration at each position in the n material [Eq. (5-32)], it
decreases exponentially in x, with the decreasing dp(x,). Thus the electron
component of current must increase appropriately with x,, to maintain the
total current /. Far from the junction, the current in the n material is carried
almost entirely by electrons. The physical explanation of this is that electrons
must flow in from the n material (and ultimately from the negative terminal
of the battery), to resupply electrons lost by recombination in the excess hole
distribution near the junction. The electron current /,(x,) includes sufficient
electron flow to supply not only recombination near x,,, but also injection of
electrons into the p region. Of course, the flow of electrons in the n material
toward the junction constitutes a current in the +x-direction, contributing
to the total current 1.

One question that still remains to be answered is whether the majority
carrier current is due to drift or diffusion or both, at different points in the

—Xp0 0 Xn0
! !
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L T X

1(x)
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Electron and hole components of current in a forward-biased p-n junction. In this example, we have a
higher injected minority hole current on the n side than electron current on the p side because we have
a lower n doping than p doping.
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diode. Near the junction (just outside of the depletion regions) the major-
ity carrier concentration changes by exactly the same amount as minority
carriers in order to maintain space charge neutrality. The majority carrier
concentration can change rather fast, in a very short time scale known as
the dielectric relaxation time, Tp(=pe), where p is the resistivity and e is
the dielectric constant. The relaxation time 7, is the analog of the RC time
constant in a circuit. Very far away from the junction (more than 3 to 5 dif-
fusion lengths), the minority carrier concentration decays to a low, constant
background value. Hence, the majority carrier concentration also becomes
independent of position. Here, clearly the only possible current component is
majority carrier drift current. When approaching the junction there is a spa-
tially varying majority (and minority) carrier concentration and the majority
carrier current changes from pure drift to drift and diffusion, although drift
always dominates for majority carriers except in cases of very high levels of
injection. Throughout the diode, the total current due to majority and minor-
ity carriers at any cross section is kept constant.

We thus note that the electric field in the neutral regions cannot be zero
as we previously assumed; otherwise, there would be no drift currents. Thus
our assumption that all of the applied voltage appears across the transition
region is not completely accurate. On the other hand, the majority carrier
concentrations are usually large in the neutral regions, so that only a small
field is needed to drive the drift currents. Thus the assumption that junction
voltage equals applied voltage is acceptable for most calculations.

Find an expression for the electron current in the n-type material of a
forward-biased p-n junction.

EXAMPLE 5-3

217

The total current is
D D
P n

1= aa( P, + 7 @1

The hole current on the n side is
DP —x,/L,( ,qV/kT
Ip(xrz) = qupne ! p(e - 1)
P

Thus the electron current in the n material is
D, D,
L(x,) =1 - L(x,) = qA f(l — e/lyp, + ]T”P (qu/kT — 1)
P n

This expression includes the supplying of electrons for recombination
with the injected holes, and the injection of electrons across the junction
into the p side.

SOLUTION
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5.3.3 Reverse Bias

In our discussion of carrier injection and minority carrier distributions, we
have primarily assumed forward bias. The distributions for reverse bias can
be obtained from the same equations (Fig. 5-18), if a negative value of V' is

introduced. For example, if V = —V, (p negatively biased with respect to n),
we can approximate Eq. (5-29) as
Ap, = p (et — N=—p  forV, > kT/q (5-41)

and similarly An,=—n,,.
Thus for a reverse bias of more than a few tenths of a volt, the minor-
ity carrier concentration at each edge of the transition region becomes

|
T

n(xp) p(xn)

“Xpo 0 X 40
1 1
} |

Anp: -n,
V=-vV,
—_— _— np
Xp 0 Xn
(a)
Ecp
q(Vo+V,)
E 2
Ef]p — — — Ecn
- T = =__ _ _Ep
EVI’l
(b)
Figure 5-18

Reverse-biased p-n junction: (a) minority carrier distributions near the reverse-biased junction;
(b) variation of the quasi-Fermi levels.
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essentially zero as the excess concentration approaches the negative of the
equilibrium concentration. The excess minority carrier concentrations in
the neutral regions are still given by Eq. (5-31), so that depletion of carri-
ers below the equilibrium values extends approximately a diffusion length
beyond each side of the transition region. This reverse-bias depletion of
minority carriers can be thought of as minority carrier extraction, analogous
to the injection of forward bias. Physically, extraction occurs because minor-
ity carriers at the edges of the depletion region are swept down the barrier at
the junction to the other side and are not replaced by an opposing diffusion
of carriers. For example, when holes at x,, are swept across the junction to
the p side by the € field, a gradient in the hole distribution in the n mate-
rial exists, and holes in the n region diffuse toward the junction. The steady
state hole distribution in the n region has the inverted exponential shape
of Fig. 5-18a. It is important to remember that although the reverse satura-
tion current occurs at the junction by drift of carriers down the barrier, this
current is fed from each side by diffusion toward the junction of minority
carriers in the neutral regions. The rate of carrier drift across the junction
(reverse saturation current) depends on the rate at which holes arrive at x,,
(and electrons at x,,) by diffusion from the neutral material. These minor-
ity carriers are supplied by thermal generation, and we can show that the
expression for the reverse saturation current, Eq. (5-38), represents the rate
at which carriers are generated thermally within a diffusion length of each
side of the transition region.

In reverse bias, the quasi-Fermi levels split in the opposite sense than
in forward bias (Fig. 5-18b). The F, moves farther away from E, (close to E,)
and F, moves farther away from E, , reflecting the fact that in reverse bias we
have fewer carriers than in equilibrium, unlike the forward bias case where
we have an excess of carriers. In reverse bias, in the depletion region, we have

pn = nle BRI < (5-42)

It is interesting to note that the quasi-Fermi levels in reverse bias can go
inside the bands. For example, F), goes inside the conduction band on the n
side of the depletion region. However, we must remember that F), is a mea-
sure of the hole concentration, and should be correlated with the valence
band edge, E,, and not with E.. Hence, the band diagram simply reflects the
fact that we have very few holes in this region, even fewer than the already
small equilibrium minority carrier hole concentration (Fig. 5-18a). Similar
observations can be made about the electrons.

An abrupt Si p-n junction (A = 10~*cm?) has the following properties
at 300 K:

p side n side
N, =10"cm™ FERlis
T, = 0.1 ps T, = 10 ps

EXAMPLE 5-4

219



220 Chapter 5

B, = 200 cm*/V—s W, = 1300
w, = 700 m, = 450

The junction is forward biased by 0.5 V. What is the forward current?
What is the current at a reverse bias of —0.5 V?

SOLUTION D, D,
I= qA(Lpn + Ln,,)(eqv/” — 1) = I(e?*" = 1)
P n
2 (1.5 x 10"
P, = = % =225 X 10°em™
n, 10
2 1.5 X 10'%)?
py= o LX) s x 107 e
Dp 10
For minority carriers,
kT > .
D, = ?Mp = 0.0259 X 450 = 11.66 cm~ /s on the n side
kT 2 .
D, = ?}Ln = 0.0259 X 700 = 18.13 cm* /s on the p side
L,=VD,, = \V11.66 X 10 X 10° = 1.08 X 107 cm
L,=\/D,r, = V1813 x 0.1 x 10 = 1.35 X 10 cm
DP Dn
I, = qA fppn 4 fnnp
11.66 18.13
=16 X 107" x 0.0001( 225 X 10° + 2.25 X 103>
0.0108 0.00135
= 4370 X 107 A
I = I,(e"/%9% — 1) =~ 1.058 X 10 °A in forward bias.
I = —I, = —4.37 X 10 A in reverse bias.
5.4 We have found that a p-n junction biased in the reverse direction exhib-
REVERSE-BIAS its a small, essentially voltage-independent saturation current. This is true
BREAKDOWN until a critical reverse bias is reached, for which reverse breakdown occurs

(Fig. 5-19). At this critical voltage (V) the reverse current through the diode
increases sharply, and relatively large currents can flow with little further
increase in voltage. The existence of a critical breakdown voltage introduces
almost a right-angle appearance to the reverse characteristic of most diodes.

There is nothing inherently destructive about reverse breakdown. If the
current is limited to a reasonable value by the external circuit, the p-n junc-
tion can be operated in reverse breakdown as safely as in the forward-bias
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E R Figure 5-19
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condition. For example, the maximum reverse current which can flow in the
device of Fig. 5-19 is (E — Vy,)/R; the series resistance R can be chosen to
limit the current to a safe level for the particular diode used. If the current is
not limited externally, the junction can be damaged by excessive reverse cur-
rent, which overheats the device as the maximum power rating is exceeded. It
is important to remember, however, that such destruction of the device is not
necessarily due to mechanisms unique to reverse breakdown; similar results
occur if the device passes excessive current in the forward direction.'? As we
shall see in Section 5.4.4, useful devices called breakdown diodes are designed
to operate in the reverse breakdown regime of their characteristics.

Reverse breakdown can occur by two mechanisms, each of which
requires a critical electric field in the junction transition region. The first
mechanism, called the Zener effect, is operative at low voltages (up to a few
volts reverse bias). If the breakdown occurs at higher voltages (from a few
volts to thousands of volts), the mechanism is avalanche breakdown. We shall
discuss these two mechanisms in this section.

5.4.1 Zener Breakdown

When a heavily doped junction is reverse biased, the energy bands become
crossed at relatively low voltages (i.e., the n-side conduction band appears
opposite the p-side valence band). As Fig. 5-20 indicates, the crossing of
the bands aligns the large number of empty states in the n-side conduction

2The dissipated power (IV) in the junction is, of course, greater for a given current in the breakdown
regime than it would be for the forward bias, simply because V is greater.
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Figure 5-20

The Zener effect:
(a) heavily
doped junction
at equilibrium;
(b) reverse bias
with electron
tunneling from

p fo n; (¢} -V
characteristic.

(a) (b) (c)

band opposite the many filled states of the p-side valence band. If the bar-
rier separating these two bands is narrow, tunneling of electrons can occur,
as discussed in Section 2.4.4. Tunneling of electrons from the p-side valence
band to the n-side conduction band constitutes a reverse current from n to p;
this is the Zener effect.

The basic requirements for tunneling current are a large number of
electrons separated from a large number of empty states by a narrow barrier
of finite height. Since the tunneling probability depends upon the width of
the barrier (d in Fig. 5-20), it is important that the metallurgical junction be
sharp and the doping high, so that the transition region W extends only a very
short distance from each side of the junction. If the junction is not abrupt,
or if either side of the junction is lightly doped, the transition region W will
be too wide for tunneling.

As the bands are crossed (at a few tenths of a volt for a heavily doped
junction), the tunneling distance d may be too large for appreciable tunnel-
ing. However, d becomes smaller as the reverse bias is increased, because the
higher electric fields result in steeper slopes for the band edges. This assumes
that the transition region width W does not increase appreciably with reverse
bias. For low voltages and heavy doping on each side of the junction, this is a
good assumption. However, if Zener breakdown does not occur with reverse
bias of a few volts, avalanche breakdown will become dominant.

In the simple covalent bonding model (Fig. 3-1), the Zener effect can
be thought of as field ionization of the host atoms at the junction. That is, the
reverse bias of a heavily doped junction causes a large electric field within W;
at a critical field strength, electrons participating in covalent bonds may be torn
from the bonds by the field and accelerated to the n side of the junction. The
electric field required for this type of ionization is on the order of 10° V/cm.

5.4.2 Avalanche Breakdown

For lightly doped junctions electron tunneling is negligible, and instead, the
breakdown mechanism involves the impact ionization of host atoms by ener-
getic carriers. Normal lattice-scattering events can result in the creation of
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EHPs if the carrier being scattered has sufficient energy. For example, if the
electric field € in the transition region is large, an electron entering from the
p side may be accelerated to high enough kinetic energy to cause an ionizing
collision with the lattice (Fig. 5-21a). A single such interaction results in car-
rier multiplication; the original electron and the generated electron are both
swept to the n side of the junction, and the generated hole is swept to the
p side (Fig. 5-21b). The degree of multiplication can become very high if car-
riers generated within the transition region also have ionizing collisions with
the lattice. For example, an incoming electron may have a collision with the
lattice and create an EHP; each of these carriers has a chance of creating a
new EHP, and each of those can also create an EHP, and so forth (Fig. 5-21c¢).
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Figure 5-21
Electron-hole
pairs created by
impact ionization:
(a) band diagram
of a p-n junction
in reverse

bias showing

a (primary)
electron gaining
kinetic energy in
the field of the
depletion region,
and creating

a (secondary)
electron-hole
pair by impact
ionization, the
primary electron
losing most of its
kinetic energy

in the process;
(b) a single
ionizing collision
by an incoming
electron in the
depletion region
of the junction;
(c) primary,
secondary, and
tertiary collisions.
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This is an avalanche process, since each incoming carrier can initiate the
creation of a large number of new carriers.

We can make an approximate analysis of avalanche multiplication by
assuming that a carrier of either type has a probability P of having an ion-
izing collision with the lattice while being accelerated a distance W through
the transition region. Thus for #;, electrons entering from the p side, there
will be Pn;, ionizing collisions and an EHP (secondary carriers) for each col-
lision. After the Pn;, collisions by the primary electrons, we have the primary
plus the secondary electrons, n;,(1 + P). After a collision, each EHP moves
effectively a distance of W within the transition region. For example, if an
EHP is created at the center of the region, the electron drifts a distance W /2
ton and the hole W/2 to p.Thus the probability that an ionizing collision will
occur due to the motion of the secondary carriers is still P in this simplified
model. For n;, P secondary pairs there will be (7;,P)P ionizing collisions and
n,P* tertiary pairs. Summing up the total number of electrons out of the
region at n after many collisions, we have

Now = Nin(l + P+ PP+ PP+ ...) (5-43)

assuming no recombination. In a more comprehensive theory we would
include recombination as well as different probabilities for ionizing collisions
by electrons and holes. In our simple theory, the electron multiplication M,, is

_nout_ D 3 _ 1
M,=-=1+4+P+P +P+ - =—  (544a)
iy 1-P

as can be verified by direct division. As the probability of ionization P
approaches unity, the carrier multiplication (and therefore the reverse cur-
rent through the junction) increases without limit. Actually, the limit on the
current will be dictated by the external circuit.

The relation between multiplication and P was easy to write in
Eq. (5-44a); however, the relation of P to parameters of the junction is
much more complicated. Physically, we expect the ionization probability to
increase with increasing electric field, and therefore to depend on the reverse
bias. Measurements of carrier multiplication M in junctions near breakdown
lead to an empirical relation

1

M=T=wivar

(5-44b)

where the exponent n varies from about 3 to 6, depending on the type of
material used for the junction.

In general, the critical reverse voltage for breakdown increases with the
band gap of the material, since more energy is required for an ionizing col-
lision. Also, the peak electric field within W increases with increased doping
on the more lightly doped side of the junction. Therefore, V), decreases as
the doping increases, as Fig. 5-22 indicates.
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5.4.3 Rectifiers

The most obvious property of a p-n junction is its unilateral nature; that is,
to a good approximation it conducts current in only one direction. We can
think of an ideal diode as a short circuit when forward biased and as an open
circuit when reverse biased (Fig. 5-23a). The p-n junction diode does not
quite fit this description, but the /-V characteristics of many junctions can be
approximated by the ideal diode in series with other circuit elements to form
an equivalent circuit. For example, most forward-biased diodes exhibit an
offset voltage E, (see Fig. 5-33), which can be approximated in a circuit model

1 I I
dv
di R
v E, v E, v
! I I
— —_— —_—

R
o—Pp—o o—P—ij—o o——|ij—w——o0
+ - " Ey + Eo -

—y— —y— - V\V_/
(a) (b) ()
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Figure 5-22
Variation of
avalanche
breakdown
voltage in
abrupt p*-n
junctions, as a
function of donor
concentration

on the n side,
for several
semiconductors.
[After S. M. Sze
and G. Gibbons,
Applied Physics
Letters, vol. 8,

b. 111 (1966 ]

Figure 5-23
Piecewise-linear
approximations
of junction diode
characteristics:
(a) the ideal
diode; (b) ideal
diode with an
offset voltage;

(c) ideal diode
with an offset
voltage and a
resistance fo
account for slope
in the forward
characteristic.
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by a battery in series with the ideal diode (Fig. 5-23b). The series battery in
the model keeps the ideal diode turned off for applied voltages less than E|,.
From Section 5.6.1 we expect E, to be approximately the contact potential
of the junction. In some cases the approximation to the actual diode char-
acteristic is improved by adding a series resistor R to the circuit equivalent
(Fig. 5-23c¢). The equivalent circuit approximations illustrated in Fig. 5-23 are
called piecewise-linear equivalents, since the approximate characteristics are
linear over specific ranges of voltage and current.

An ideal diode can be placed in series with an a-c voltage source to
provide rectification of the signal. Since current can flow only in the forward
direction through the diode, only the positive half-cycles of the input sine
wave are passed. The output voltage is a half-rectified sine wave. Whereas the
input sinusoid has zero average value, the rectified signal has a positive aver-
age value and therefore contains a d-c component. By appropriate filtering,
this d-c level can be extracted from the rectified signal.

The unilateral nature of diodes is useful for many other circuit appli-
cations that require waveshaping. This involves alteration of a-c signals by
passing only certain portions of the signal while blocking other portions.

Junction diodes designed for use as rectifiers should have /-V charac-
teristics as close as possible to that of the ideal diode. The reverse current
should be negligible, and the forward current should exhibit little voltage
dependence (negligible forward resistance R). The reverse breakdown volt-
age should be large, and the offset voltage E, in the forward direction should
be small. Unfortunately, not all of these requirements can be met by a single
device; compromises must be made in the design of the junction to provide
the best diode for the intended application.

From the theory derived in Section 5.3 we can easily list the various
requirements for good rectifier junctions. Band gap is obviously an impor-
tant consideration in choosing a material for rectifier diodes. Since #; is small
for large band gap materials, the reverse saturation current (which depends
on thermally generated carriers) decreases with increasing E,. A rectifier
made with a wide band gap material can be operated at higher tempera-
tures, because thermal excitation of EHPs is reduced by the increased band
gap. Such temperature effects are critically important in rectifiers, which
must carry large currents in the forward direction and are thereby subjected
to appreciable heating. On the other hand, the contact potential and offset
voltage E, generally increase with E,. This drawback is usually outweighed
by the advantages of low n;; for example, Si is generally preferred over Ge
for power rectifiers because of its wider band gap, lower leakage current,
and higher breakdown voltage, as well as its more convenient fabrication
properties.

The doping concentration on each side of the junction influences the
avalanche breakdown voltage, the contact potential, and the series resistance
of the diode. If the junction has one highly doped side and one lightly doped
side (such as a p*-n junction), the lightly doped region determines many of
the properties of the junction. From Fig. 5-22 we see that a high-resistivity
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region should be used for at least one side of the junction to increase the
breakdown voltage V. However, this approach tends to increase the for-
ward resistance R of Fig. 5-23c, and therefore contributes to the problems
of thermal effects due to IR heating. To reduce the resistance of the lightly
doped region, it is necessary to make its area large and reduce its length.
Therefore, the physical geometry of the diode is another important design
variable. Limitations on the practical area for a diode include problems of
obtaining uniform starting material and junction processing over large areas.
Localized flaws in junction uniformity can cause premature reverse break-
down in a small region of the device. Similarly, the lightly doped region of
the junction cannot be made arbitrarily short. One of the primary problems
with a short, lightly doped region is an effect called punch-through. Since the
transition region width W increases with reverse bias and extends primarily
into the lightly doped region, it is possible for W to increase until it fills the
entire length of this region (Prob. 5.30). The result of punch-through is a
breakdown below the value of Vy, expected from Fig. 5-22.

In devices designed for use at high reverse bias, care must be taken to
avoid premature breakdown across the edge of the sample. This effect can
be reduced by beveling the edge or by diffusing a guard ring to isolate the
junction from the edge of the sample (Fig. 5-24). The electric field is lower at
the beveled edge of the sample in Fig. 5-24b than it is in the main body of the
device. Similarly, the junction at the lightly doped p guard ring of Fig. 5-24c
breaks down at higher voltage than the p*-n junction. Since the depletion
region is wider in the p ring than in the p* region, the average electric field
is smaller at the ring for a given diode reverse voltage.

In fabricating a p™-n or a p-n* junction, it is common to terminate the
lightly doped region with a heavily doped layer of the same type (Fig. 5-25a),
to ease the problem of making ohmic contact to the device. The result is
a p*-n-n* structure with the p-n™ layer serving as the active junction, or a
p-n-n" device with an active p-n* junction. The lightly doped center region
determines the avalanche breakdown voltage. If this region is short com-
pared with the minority carrier diffusion length, the excess carrier injection
for large forward currents can increase the conductivity of the region sig-
nificantly. This type of conductivity modulation, which reduces the forward
resistance R, can be very useful for high-current devices. On the other hand,

(a) (b) (©)
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Figure 5-24
Beveled edge
and guard ring
to prevent edge
breakdown under
reverse bias:

(a) diode with
beveled edge;
(b) closeup view
of edge, showing
reduction of
depletion region
near the level;

(c) guard ring.
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Figure 5-25

A p*-n-n* junction
diode: (a) device
configuration;

(b) zero-bias
condition;

(c) reverse-biased
to punch-through.

~—W ~—W-—

(a) (b) (c)

a short, lightly doped center region can also lead to punch-through under
reverse bias, as in Fig. 5-25c.

The mounting of a rectifier junction is critical to its ability to handle
power. For diodes used in low-power circuits, glass or plastic encapsulation
or a simple header mounting is adequate. However, high-current devices
that must dissipate large amounts of heat require special mountings to trans-
fer thermal energy away from the junction. A typical Si power rectifier is
mounted on a molybdenum or tungsten disk to match the thermal expan-
sion properties of the Si. This disk is fastened to a large stud of copper or
other thermally conductive material that can be bolted to a heat sink with
appropriate cooling.

5.4.4 The Breakdown Diode

As we discussed earlier in this section, the reverse-bias breakdown voltage
of a junction can be varied by choice of junction doping concentrations. The
breakdown mechanism is the Zener effect (tunneling) for abrupt junctions
with extremely heavy doping; however, the more common breakdown is
avalanche (impact ionization), typical of more lightly doped or graded junc-
tions. By varying the doping we can fabricate diodes with specific breakdown
voltages ranging from less than one volt to several hundred volts. If the junc-
tion is well designed, the breakdown will be sharp and the current after
breakdown will be essentially independent of voltage (Fig. 5-26a). When a
diode is designed for a specific breakdown voltage, it is called a breakdown
diode. Such diodes are also called Zener diodes, despite the fact that the
actual breakdown mechanism is usually the avalanche effect. This error in
terminology is due to an early mistake in identifying the first observations
of breakdown in p-n junctions.

Breakdown diodes can be used as voltage regulators in circuits with
varying inputs. The 15-V breakdown diode of Fig. 5-26 holds the circuit out-
put voltage v, constant at 15 V, while the input varies at voltages greater
than 15 V. For example, if v, is a rectified and filtered signal composed of a
17-V d-c component and a 1-V ripple variation above and below 17 V, the
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Vs Vo Figure 5-26
A breakdown
17Vl% 15VJ77 diode: (a) I-V
T T, characteristic;
! ! (b) application
as a voltage
regulator.
+ +
15V v, v
4 — _
@ (b)

output v, will remain constant at 15 V. More complicated voltage regulator
circuits can be designed using breakdown diodes, depending on the type of
signal being regulated and the nature of the output load. In a similar applica-
tion, such a device can be used as a reference diode; since the breakdown volt-
age of a particular diode is known, the voltage across it during breakdown
can be used as a reference in circuits that require a known value of voltage.

We have considered the properties of p-n junctions under equilibrium condi- 5.5
tions and with steady state current flow. Most of the basic concepts of junc-  TRANSIENT AND
tion devices can be obtained from these properties, except for the important ~A-C CONDITIONS
behavior of junctions under transient or a-c conditions. Since most solid
state devices are used for switching or for processing a-c signals, we can-
not claim to understand p-n junctions without knowing at least the basics
of time-dependent processes. Unfortunately, a complete analysis of these
effects involves more mathematical manipulation than is appropriate for an
introductory discussion. Basically, the problem involves solving the various
current flow equations in two simultaneous variables, space and time. We can,
however, obtain the basic results for several special cases which represent
typical time-dependent applications of junction devices.
In this section we investigate the important influence of excess carriers
in transient and a-c problems. The switching of a diode from its forward state
to its reverse state is analyzed to illustrate a typical transient problem. Finally,
these concepts are applied to the case of small a-c signals to determine the
equivalent capacitance of a p-n junction.

5.5.1 Time Variation of Stored Charge

Another look at the excess carrier distributions of a p-n junction under bias
(e.g., Fig. 5-15) tells us that any change in current must lead to a change of
charge stored in the carrier distributions. Since time is required in building
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up or depleting a charge distribution, however, the stored charge must inevi-
tably lag behind the current in a time-dependent problem. This is inherently
a capacitive effect, as we shall see in Section 5.5.4.

For a proper solution of a transient problem, we must use the time-
dependent continuity equations, Egs. (4-31). We can obtain each component
of the current at position x and time ¢ from these equations; for example,
from Eq. (4-31a) we can write

aJ,(x, 1) Sp(x, 1) ap(x, 1)
Pl +q
X Ty ot

(5-45)

To obtain the instantaneous current density, we can integrate both sides
at time ¢ to obtain

J,0) = 1,(x) = g /0 x{ap &0, Pt t)}dx (5-46)

T, at

For injection into a long n region from a p* region, we can take the
current at x,, = 0 to be all hole current, and J,at x,, = % to be zero. Then
the total injected current, including time variations, is

Tp

A o] a o]
l(t) = ip(xn = 09 t) = q/ Sp(xm t)dxn + qAal‘/ Sp(xm t)dxn
0 0

Q)0 40,1
T dt

i() = (5-47)

This result indicates that the hole current injected across the p*-n
junction (and therefore approximately the total diode current) is determined
by two charge storage effects: (1) the usual recombination term Q,/7, in
which the excess carrier distribution is replaced every 7, seconds, and (2) a
charge buildup (or depletion) term dQ,,/dt, which allows for the fact that
the distribution of excess carriers can be increasing or decreasing in a time-
dependent problem. For steady state the dQ,,/dt term is zero,and Eq. (5-47)
reduces to Eq. (5-40), as expected. In fact, we could have written Eq. (5-47)
intuitively rather than having obtained it from the continuity equation, since
it is reasonable that the hole current injected at any given time must supply
minority carriers for recombination and for whatever variations that occur
in the total stored charge.

We can solve for the stored charge as a function of time for a given
current transient. For example, the step turn-off transient (Fig. 5-27a), in
which a current / is suddenly removed at t = 0, leaves the diode with stored
charge. Since the excess holes in the n region must die out by recombina-
tion with the matching excess electron population, some time is required
for Q,(¢) to reach zero. Solving Eq. (5-47) with Laplace transforms, with
i(t > 0) = 0and Q,(0) = It,, we obtain
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0,0 8p Figure 5-27
Effects of a step
turn-off transient
in a p™n diode:
(a) current
through the
diode; (b) decay
of stored charge
in the n-region;

Increasing
time

0 t t 0 x, ) excess hole
distribution in
@) (®) © the n-region as
. a function of
_ B time during the
0= TI,QP(S) * SQ”(S) I, transient.
I,
Sy
Q,(t) = It,e /™ (5-48)

As expected, the stored charge dies out exponentially from its initial value
I, with a time constant equal to the hole lifetime in the n material.

An important implication of Fig. 5-27 is that even though the cur-
rent is suddenly terminated, the voltage across the junction persists until Q,
disappears. Since the excess hole concentration can be related to junction
voltage by formulas derived in Section 5.3.2, we can presumably solve for
v(t). We already know that at any time during the transient, the excess hole
concentration at x,, = 01is

Ap, () = p (™ — 1) (5-49)

so that finding Ap,,(¢) will easily give us the transient voltage. Unfortunately,
it is not simple to obtain Ap,(t) exactly from our expression for Q,(¢). The
problem is that the hole distribution does not remain in the convenient
exponential form it has in steady state. As Fig. 5-27c suggests, the quantity
5p(x,, t) becomes markedly nonexponential as the transient proceeds. For
example, since the injected hole current is proportional to the gradient of the
hole distribution at x, = 0 (Fig. 5-16a), zero current implies zero gradient.
Thus the slope of the distribution must be exactly zero at x,, = 0 throughout
the transient.'® This zero slope at the point of injection distorts the expo-
nential distribution, particularly in the region near the junction. As time
progresses in Fig. 5-27c, 8p (and therefore 8n) decreases as the excess elec-
trons and holes recombine. To find the exact expression for 8p(x,,, ) during
the transient would require a rather difficult solution of the time-dependent
continuity equation.

3We notice that, while the magnitude of 8p cannot change instantaneously, the slope must go to zero
immediately. This can occur in a small region near the junction with negligible redistribution of charge at t = 0.



232

Chapter 5

An approximate solution for v(¢) can be obtained by assuming an expo-
nential distribution for 8p at every instant during the decay. This type of
quasi-steady state approximation neglects distortion due to the slope require-
ment at x, = 0 and the effects of diffusion during the transient. Thus we
would expect the calculation to give rather crude results. On the other hand,
such a solution can give us a feeling for the variation of junction voltage
during the transient. If we take

8p(x,n 1) = Ap,(1)e /b (5-50)

we have for the stored charge at any instant
00 = 4 [ 8p (e, = aALdp ) (5D
0

Relating Ap,(t) to v(¢) by Eq. (5-49) we have

Q,(1)
qAL,

Apn(t) = pn(qu(t)/kT - 1) = (5782)

Thus in the quasi-steady state approximation, the junction voltage var-
ies according to

kT IT
v(f) = 1n(”ef/f» + 1) (5-53)
q qAL,p,

during the turn-off transient of Fig. 5-27 This analysis, while not accurate in
its details, does indicate clearly that the voltage across a p-n junction cannot
be changed instantaneously, and that stored charge can present a problem
in a diode intended for switching applications.

Many of the problems of stored charge can be reduced by designing
a p"-n diode (for example) with a very narrow n region. If the n region is
shorter than a hole diffusion length, very little charge is stored. Thus, little
time is required to switch the diode on and off. This type of structure, called
the narrow base diode, is considered in Prob. 5.40. The switching process can
be made still faster by purposely adding recombination centers, such as Au
atoms in Si, to increase the recombination rate.

5.5.2 Reverse Recovery Transient

In most switching applications a diode is switched from forward conduc-
tion to a reverse-biased state, and vice versa. The resulting stored charge
transient is somewhat more complicated than for a simple turn-off transient,
and therefore it requires slightly more analysis. An important result of this
example is that a reverse current much larger than the normal reverse satura-
tion current can flow in a junction during the time required for readjustment
of the stored charge.
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Let us assume a p'-n junction is driven by a square wave generator
that periodically switches from +E to —FE volts (Fig. 5-28a). While E is
positive the diode is forward biased, and in steady state the current /; flows
through the junction. If E is much larger than the small forward voltage of
the junction, the source voltage appears almost entirely across the resistor,

N
(@ R G
0 t
pt n
)

T —>

(®)

Reverse saturation
current 1

v goes to zero

(C))
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Figure 5-28
Storage delay
time ina p™n
diode: (a) circuit
and input square
wave; (b) hole
distribution in
the n-region

as a function

of time during
the transient;

(c) variation

of current and
voltage with
time; (d) sketch of
transient current
and voltage on
the device |-V
characteristic.
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Figure 5-29
Effects of storage
delay time on
switching signal:
(a) switching
voltage; (b) diode
current.

and the current is approximately i = I; = E/R. After the generator volt-
age is reversed (¢ > 0), the current must initially reverse toi = [,=—E/R.
The reason for this unusually large reverse current through the diode is
that the stored charge (and hence the junction voltage) cannot be changed
instantaneously. Therefore, just as the current is reversed, the junction volt-
age remains at the small forward-bias value it had before r = 0. A voltage
loop equation then tells us that the large reverse current —E/R must flow
temporarily. While the current is negative through the junction, the slope of
the 8p(x,) distribution must be positive at x,, = 0.

As the stored charge is depleted from the neighborhood of the junc-
tion (Fig. 5-28b), we can find the junction voltage again from Eq. (5-49). As
long as Ap,, is positive, the junction voltage v(¢) is positive and small; thus
i=—FE/R until Ap, goes to zero. When the stored charge is depleted and
Ap, becomes negative, the junction exhibits a negative voltage. Since the
reverse-bias voltage of a junction can be large, the source voltage begins to
divide between R and the junction. As time proceeds, the magnitude of the
reverse current becomes smaller as more of —E appears across the reverse-
biased junction, until finally the only current is the small reverse saturation
current which is characteristic of the diode. The time ¢, required for the
stored charge (and therefore the junction voltage) to become zero is called
the storage delay time. This delay time is an important figure of merit in
evaluating diodes for switching applications. It is usually desirable that 4
be small compared with the switching times required (Fig. 5-29). The criti-
cal parameter determining y is the carrier lifetime (7, for the example of
the p*-n junction). Since the recombination rate determines the speed with
which excess holes can disappear from the n region, we would expect f, to

(@) .

o
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be proportional to 7. In fact, an exact analysis of the problem of Fig. 5-28
leads to the result

I 2
lq = Tp{erf*(If“)} (5-54)

where the error function (erf) is a tabulated function. Although the exact
solution leading to Eq. (5-54) is too lengthy for us to consider here, an
approximate result can be obtained from the quasi-steady state assumption.

Assume a p"-n diode is biased in the forward direction, with a current /.
At time ¢t = 0 the current is switched to —/,. Use the appropriate bound-
ary conditions to solve Eq. (5-47) for Q,(¢). Apply the quasi-steady state
approximation to find the storage delay time z.

EXAMPLE 5-5

235

From Eq. (5-47),

Q,(1) . dQ,(1)
dt

i(r) = fort <0,0, = I

T, g
Using Laplace transforms,
1, Q))
= - + 50,(s) — I,
IfTP Ir
Q(s) s+1/Tp_s(s+1/Tp)

0,(t) = Imye /™ + L (e — 1) = 7,[=1, + (I; + I)e /"]
Assuming that Q,(t) = qAL,Ap,(t) as in Eq. (5-52),

T
Ap,(t) = —5— = [ + (I; + I)e ™I
pn() C]ALP [r (f r)e ]

This is set to equal zero when ¢ = t4, and we obtain:

15 Iy
= Tpll’l 1+ —
I+ I,

tsd = _’Tp In

An important result of Eq. (5-54) is that 7, can be calculated in a
straightforward way from a measurement of storage delay time. In fact,
measurement of ¢z, from an experimental arrangement such as Fig. 5-28a
is a common method of measuring lifetimes. In some cases this is a more

SOLUTION
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convenient technique than the photoconductive decay measurement dis-
cussed in Section 4.3.2.

As in the case of the turn-off transient of the previous section, the stor-
age delay time can be reduced by introducing recombination centers into the
diode material, thus reducing the carrier lifetimes, or by utilizing the narrow
base diode configuration.

5.5.3 Switching Diodes

In discussing rectifiers we emphasized the importance of minimizing the
reverse-bias current and the power losses under forward bias. In many appli-
cations, time response can be important as well. If a junction diode is to be
used to switch rapidly from the conducting to the nonconducting state and
back again, special consideration must be given to its charge control proper-
ties. We have discussed the equations governing the turn-on time and the
reverse recovery time of a junction. From Egs. (5-47) and (5-54) it is clear
that a diode with fast switching properties must either store very little charge
in the neutral regions for steady forward currents or have a very short carrier
lifetime, or both.

As mentioned above, we can improve the switching speed of a diode by
adding efficient recombination centers to the bulk material. For Si diodes, Au
doping is useful for this purpose. To a good approximation the carrier lifetime
varies with the reciprocal of the recombination center concentration. Thus, for
example, a p"-n Si diode may have 7, = 1 ps and a reverse recovery time of
0.1 ws before Au doping. If the addition of 10" Au atoms/cm? reduces the life-
time to 0.1 us and £ to 0.01 ps, 10" cm ™~ Au atoms could reduce T, to 0.01 ps
and £, to 1 ns (107?s). This process cannot be continued indefinitely, however.
The reverse current due to generation of carriers from the Au centers in the
depletion region becomes appreciable with large Au concentration (Section
5.6.2).In addition, as the Au concentration approaches the lightest doping of the
junction, the equilibrium carrier concentration of that region can be affected.

A second approach to improving the diode switching time is to make
the lightly doped neutral region shorter than a minority carrier diffusion
length. This is the narrow base diode (Prob. 5.40). In this case the stored
charge for forward conduction is very small, since most of the injected car-
riers diffuse through the lightly doped region to the end contact. When such
a diode is switched to reverse conduction, very little time is required to
eliminate the stored charge in the narrow neutral region. The mathematics
involved in Prob. 5.40 is particularly interesting, because it closely resembles
the calculations we shall make in analyzing the bipolar junction transistor
in Chapter 7

5.5.4 Capacitance of p-n Junctions

There are basically two types of capacitance associated with a junction:
(1) the junction capacitance due to the dipole in the transition region and
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(2) the charge storage capacitance arising from the lagging behind of voltage
as current changes, due to charge storage effects.'® Both of these capacitances
are important, and they must be considered in designing p-n junction devices
for use with time-varying signals. The junction capacitance (1) is dominant
under reverse-bias conditions, and the charge storage capacitance (2) is
dominant when the junction is forward biased. In many applications of p-n
junctions, the capacitance is a limiting factor in the usefulness of the device;
on the other hand, there are important applications in which the capacitance
discussed here can be useful in circuit applications and in providing impor-
tant information about the structure of the p-n junction.

The junction capacitance of a diode is easy to visualize from the charge
distribution in the transition region (Fig. 5-12). The uncompensated acceptor
ions on the p side provide a negative charge, and an equal positive charge
results from the ionized donors on the n side of the transition region. The
capacitance of the resulting dipole is slightly more difficult to calculate than
is the usual parallel plate capacitance, but we can obtain it in a few steps.

Instead of the common expression C = |Q/V/|, which applies to
capacitors in which charge is a linear function of voltage, we must use the
more general definition

_ |dQ
c- ‘ 10 (5-55)

since the charge Q on each side of the transition region varies nonlinearly
with the applied voltage (Fig. 5-30a). We can demonstrate this nonlinear
dependence by reviewing the equations for the width of the transition
region (W) and the resulting charge. The equilibrium value of W was found
in Eq. (5-21) to be

2¢Vy/N, + N
w:[”d

12
p NN, > } (equilibrium) (5-56)

Since we are dealing with the nonequilibrium case with voltage V
applied, we must use the altered value of the electrostatic potential barrier
(Vy — V), as discussed in relation to Fig. 5-13. The proper expression for the
width of the transition region is then

W= |:2€(V0 - V)/Na + Nd
q \ NaNd

1/2
) } (with bias) (5-57)

In this expression the applied voltage V' can be either positive or negative
to account for forward or reverse bias. As expected, the width of the transi-
tion region is increased for reverse bias and is decreased under forward bias.

1The capacitance (1) above is also referred to as the transition region capacitance or depletion layer
capacitance; (2) is often called the diffusion capacitance.
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Figure 5-30

Depletion capacitance of a junction: (a) p*-n junction showing variation of depletion edge on n side
with reverse bias. Electrically, the structure looks like a parallel plate capacitor whose dielectric is
the depletion region, and the plates are the space charge neutral regions; (b) variation of depletion
capacitance with reverse bias [Eq. (5-63)]. We neglect x in the heavily doped p* material.

Since the uncompensated charge Q on each side of the junction varies with
the transition region width, variations in the applied voltage result in cor-
responding variations in the charge, as required for a capacitor. The value of
Q can be written in terms of the doping concentration and transition region
width on each side of the junction (Fig. 5-12):

|Q] = qAx,0N; = qAx,N, (5-58)
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Relating the total width of the transition region W to the individual
widths x,, and x,, from Egs. (5-23) we have

X = LW X0 - Na_y (5-59)
N, + N, N, + N,

and therefore the charge on each side of the dipole is

NN 1/2
W = A|2qe(V, — V) (5-60)

10| = gaNe
1 N, + N,

N, + N,

Thus the charge is indeed a nonlinear function of applied voltage. From
this expression and the definition of capacitance in Eq. (5-55), we can cal-
culate the junction capacitance C;. Since the voltage that varies the charge
in the transition region is the barrier height (V, — V), we must take the
derivative with respect to this potential difference:

{ 2qe NN, 12

C =
2L(Vy— V)N, + N,

! ‘d(Vo V)’

(5-61)

The quantity C;is a voltage-variable capacitance,since C;is proportional
to (Vy, — V) 12 There are several important applications for Varlable capaci-
tors, including use in tuned circuits. The p-n junction device which makes use
of the voltage-variable properties of C; is called a varactor. We shall discuss
this device further in Section 5.5.5.

Although the dipole charge is distributed in the transition region of the
junction, the form of the parallel plate capacitor formula is obtained from
the expressions for C; and W (Fig. 5-30a):

q N,N, 12 €A

C = eA =2 562
I~ ¢ 2¢(Vy = V)N, + N, w (5-62)

In analogy with the parallel plate capacitor, the transition region width W
corresponds with the plate separation of the conventional capacitor.

In the case of an asymmetrically doped junction, the transition region
extends primarily into the less heavily doped side, and the capacitance is
determined by only one of the doping concentrations (Fig. 5-30a). For a p*-n
junction, N, >> N, and x,,=W, while x,, is negligible. The capacitance is
then (Fig. 5-30b)

J

B A[ 2qe

1/2
C = 5 ‘/()_‘/Nd:| forp*-n (5—63)

It is therefore possible to obtain the doping concentration of the lightly
doped n region from a measurement of capacitance. For example, in a
reverse-biased junction the applied voltage V = —V, can be made much
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Figure 5-31
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larger than the contact potential V), so that the latter becomes negligible. If
the area of the junction can be measured, a reliable value of N, results from
a measurement of C;. However, these equations were obtained by assuming
a sharp step junction. Certain modifications must be made in the case of a
graded junction (Section 5.6.4 and Prob. 5.42).

The junction capacitance dominates the reactance of a p-n junction
under reverse bias; for forward bias, however, the charge storage, or diffusion
capacitance, C, becomes dominant. It has been recently shown'® that the var-
ious time-dependent current components, as well as the boundary conditions,
affect the diffusion capacitance in forward bias. We need to specify at which
terminals the stored charges are extracted or “reclaimed” and where the
relevant voltage drops occur. For long diodes whose dimensions are larger
than the diffusion lengths, there is no diffusion capacitance. For a short diode,
the reclaimable charge is two-thirds of the total stored charge. The diffusion
capacitance due to stored holes on the n side of length c is:

Ao, 1q°
L= TVP = E%Acpneqv/kT (5-64)
There is a similar contribution from the stored electrons on the p side
(Fig. 5-31). In practice, most Si p-n junctions behave like short diodes, while
laser diodes made in direct band gap (short lifetime) semiconductors often
correspond to the long-diode case.
Similarly, we can determine the a-c conductance by allowing small
changes in the current. For example, for a long diode, we get

G_dl_qALpni

q
R ARy Gt el (5-65)
p

kT

BLaux, S., and K. Hess, “Revisiting the Analytic Theory of PN Junction Impedance: Improvements Guided
by Computer Simulation Leading to a New Equivalent Circuit,” IEEE Trans. Elec. Dev. 46(2) (1999), 396.
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For the diode of Example 5-4, what is the total depletion capacitance
at—4Vv?

EXAMPLE 5-6

241

1/2

q NdNa
C = A
J \/; 2(V0 - V) Nd aE Na

— \/(8.85 < 10 x 11.8)(104){ 1.6 X 1079 (1015 S 1017)}1/2

2(0.695 + 4) \ 10" + 10"
= 4198 X 10°3F

5.5.5 The Varactor Diode

The term varactor is a shortened form of variable reactor, referring to the
voltage-variable capacitance of a reverse-biased p-n junction. The equations
derived in Section 5.5.4 indicate that junction capacitance depends on the
applied voltage and the design of the junction. In some cases a junction
with fixed reverse bias may be used as a capacitance of a set value. More
commonly the varactor diode is designed to exploit the voltage-variable
properties of the junction capacitance. For example, a varactor (or a set of
varactors) may be used in the tuning stage of a radio receiver to replace the
bulky variable plate capacitor. The size of the resulting circuit can be greatly
reduced, and its dependability is improved. Other applications of varactors
include use in harmonic generation, microwave frequency multiplication,
and active filters.

If the p-n junction is abrupt, the capacitance varies as the square root
of the reverse bias V, [Eq. (5-61)].In a graded junction, however, the capaci-
tance can usually be written in the form

Cy o V" forV, >V, (5-66)

For example, in a linearly graded junction the exponent n is one-third
(Prob. 5.42). Thus the voltage sensitivity of C; is greater for an abrupt junc-
tion than for a linearly graded junction. For this reason, varactor diodes
are often made by epitaxial growth techniques, or by ion implantation. The
epitaxial layer and the substrate doping profile can be designed to obtain
junctions for which the exponent n in Eq. (5-66) is greater than one-half.
Such junctions are called hyperabrupt junctions.

In the set of doping profiles shown in Fig. 5-32, the junction is assumed
p'-n so that the depletion layer width W extends primarily into the n side.
Three types of doping profiles on the n side are illustrated, with the donor
distribution N,(x) given by Gx™, where G is a constant and the exponent m
is 0,1, or —%. We can show (Prob. 5.42) that the exponent n in Eq. (5-66) is
1/(m + 2) for the p*-n junction. Thus for the profiles of Fig. 5-32, n is % for
the abrupt junction and % for the linearly graded junction. The hyperabrupt

SOLUTION
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Figure 5-32
Graded junction
profiles: linearly
graded, abrupt,
hyperabrupt.

N(x) Doping profiles

,l ptside: N = N,
nside: N = Gx™
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Abrupt, m = 0

Hyperabrupt,m = —3/2

p + 0 n X

junction'® with m = —3 is particularly interesting for certain varactor appli-
cations, since for this case n = 2 and the capacitance is proportional to V.
When such a capacitor is used with an inductor L in a resonant circuit, the
resonant frequency varies linearly with the voltage applied to the varactor.

—_

1
oC
VLic Vv

Because of the wide variety of C; vs. V, dependencies available by
choosing doping profiles, varactor diodes can be designed for specific appli-
cations. For some high-frequency applications, varactors can be designed to
exploit the forward-bias charge storage capacitance in short diodes.

o« V, form=2 (5-67)

w, =

5.6

DEVIATIONS
FROM THE SIMPLE
THEORY

The approach we have taken in studying p-n junctions has focused on the
basic principles of operation, neglecting secondary effects. This allows for a
relatively uncluttered view of carrier injection and other junction properties,
and illuminates the essential features of diode operation. To complete the
description, however, we must now fill in a few details which can affect the
operation of junction devices under special circumstances.

Most of the deviations from the simple theory can be treated by fairly
straightforward modifications of the basic equations. In this section we shall
investigate the most important deviations and alter the theory wherever pos-
sible. In a few cases, we shall simply indicate the approach to be taken and
the result. The most important alterations to the simple diode theory are the
effects of contact potential and changes in majority carrier concentration on
carrier injection, recombination and generation within the transition region,
ohmic effects, and the effects of graded junctions.

"It is clear that Ny(x) cannot become arbitrarily large at x = 0. However, the m = —3 profile can be
approximated a short distance away from the junction.
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5.6.1 Effects of Contact Potential on Carrier Injection

If the forward-bias I-V characteristics of various semiconductor diodes are
compared, it becomes clear that the band gap has an important influence
on carrier injection. For example, Fig. 5-33 compares the low-temperature
characteristics of heavily doped diodes having various band gaps. One obvi-
ous feature of this figure is that the /-V characteristics appear “square”; that
is, the current is very small until a critical forward bias is reached, and then
the current increases rapidly. This is typical of exponentials plotted on such
a scale. However, it is significant that the limiting voltage is slightly less than
the value of the band gap in electron volts.

The reason for the small current at low voltages for these devices can
be understood from a simple rearrangement of the diode equation. If we
rewrite Eq. (5-36) for a forward-biased p*-n diode (with V > kT/g) and
include the exponential form for the minority carrier concentration p,,, we
obtain

_ qADpp PIV/KT — Cp;llDl’Nve[qV(Eme.)]/kT (5-68)

=" P

P P

Hole injection into the n material is small if the forward bias V' is much
less than (Eg, — E,,)/q. For a p*-n diode, this quantity is essentially the con-
tact potential, since the Fermi level is near the valence band on the p side. If
the n region is also heavily doped, the contact potential is almost equal to the
band gap (Fig. 5-34). This accounts for the dramatic increase in diode current
near the band gap voltage in Fig. 5-33. Contributing to the small current at
lower voltages is the fact that the minority carrier concentration p,, = n? /N,
is very small at low temperature (n; small) and with heavy doping (N, large).
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Figure 5-33

|-V characteristics
of heavily doped
p-n junction
diodes at 77 K,
illustrating the
effects of contact
potential on the
forward current:
(a) Ge, E;=0.7 eV;
(b) Si, E;=1.1¢V;
(c) GaAs, E, =~

1.4 eV; (d) GaAsP,
E,~1.9eV.
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Figure 5-34
Examples of
contact potential
for a heavily
doped p-n
junction: (a) at
equilibrium;

(b) approaching
the maximum
forward bias
V= Vo.
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The limiting forward bias across a p-n junction is equal to the contact
potential, as in Fig. 5-34b. This effect is not predicted by the simple diode
equation, for which the current increases exponentially with applied volt-
age. The reason this important result is excluded in the simple theory is that
in Eq. (5-28) we neglect changes in the majority carrier concentrations on
either side of the junction. This assumption is valid only for low injection
levels; for large injected carrier concentrations, the excess majority carriers
become important compared with the majority doping. For example, at low
injection An, = Ap, is important compared with the equilibrium minority
electron concentration n,, but is negligible compared with the majority hole
concentration p,; this was the basis for neglecting Ap,, in Eq. (5-28). For high
injection levels, however, Ap, can be comparable to p, and we must write
Eq. (5-27) in the form

PCX0) _ Pp + APy yyyur _ Mt Ay
p(xn()) Pn + Apn np + Anp

(5-69)

From Eq. (5-38), we get at either edge of the depletion region,

pn = p(=x0)n(=x,0) = p(x,0)n(x,0) = mie "' = niet/ T (5-70)

For example, at —x,,, we then get
(p, + Ap,)(n, + An,) = n2e?V/<T (5-71)

Keeping in mind that Ap, = An,, n, << An,, and in high-level injection
Py, < Ap,, we approximately get

An, = nedV/2kT (5-72)

The rest of the derivation is very similar to that in Section 5.3.2. Hence, the
diode current in high-level injection scales as

I o V2T (5-73)
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5.6.2 Recombination and Generation in the Transition Region

In analyzing the p-n junction, we have assumed that recombination and ther-
mal generation of carriers occur primarily in the neutral p and n regions, out-
side the transition region. In this model, forward current in the diode is carried
by recombination of excess minority carriers injected into each neutral region
by the junction. Similarly, the reverse saturation current is due to the thermal
generation of EHPs in the neutral regions and the subsequent diffusion of the
generated minority carriers to the transition region, where they are swept to
the other side by the field. In many devices this model is adequate; however,
a more complete description of junction operation should include recombina-
tion and generation within the transition region itself.

When a junction is forward biased, the transition region contains excess
carriers of both types, which are in transit from one side of the junction to
the other. Unless the width of the transition region W is very small compared
with the carrier diffusion lengths L, and L,, significant recombination can
take place within W. An accurate calculation of this recombination current
is complicated by the fact that the recombination rate, which depends on the
carrier concentrations [Eq. (4-5)], varies with position within the transition
region. Analysis of the recombination kinetics shows that the current due
to recombination within W is proportional to »; and increases with forward
bias according to approximately exp (¢V/2kT). On the other hand, current
due to recombination in the neutral regions is proportional to p, and n,
[Eq. (5-36)] and therefore to n? /N, and n? /N,, and increases according to
exp (qV/kT). The diode equation can be modified to include this effect by
including the parameter n:

I = 1I'y(e?/mT — 1) (5-74)

where n varies between 1 and 2, depending on the material and temperature.
Since n determines the departure from the ideal diode characteristic, it is
often called the ideality factor.

The ratio of the two currents

I(recombination in neutral regions)  nZe?"/*T

— "> - « netV?T (575
I(recombination in transition region)  p,e?"/?T ' ( )

becomes small for wide band gap materials, low temperatures (small »;), and
for low voltage. Thus the forward current for low injection in a Si diode is
likely to be dominated by recombination in the transition region, while a Ge
diode may follow the usual diode equation. In either case, injection through
W into the neutral regions becomes more important with increased voltage.
Therefore, n in Eq. (5-74) may vary from ~2 at low voltage to ~1 at higher
voltage.

Just as recombination within W can affect the forward characteristics,
the reverse current through a junction can be influenced by carrier gen-
eration in the transition region. We found in Section 5.3.3 that the reverse
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Figure 5-35
Currentin a
reverse-biased
p-n junction
due to thermal
generation

of carriers

by (a) band-
to-band EHP
generation, and
(b) generation
from a
recombination
level.

saturation current can be accounted for by the thermal generation of EHPs
within a diffusion length of either side of the transition region. The gener-
ated minority carriers diffuse to the transition region, where they are swept
to the other side of the junction by the electric field (Fig. 5-35). However,
carrier generation can take place within the transition region itself. If W is
small compared with L, or L, band-to-band generation of EHPs within the
transition region is not important compared with generation in the neutral
regions. However, the lack of free carriers within the space charge of the
transition region can create a current due to the net generation of carriers by
emission from recombination centers. Of the four generation-recombination
processes depicted in Fig. 5-36, the two capture rates R, and R, are negligible
within W because of the very small carrier concentrations in the reverse-bias
space charge region. Therefore, a recombination level E, near the center of
the band gap can provide carriers through the thermal generation rates G,
and G,. Each recombination center alternately emits an electron and a hole;
physically, this means that an electron at E, is thermally excited to the con-
duction band (G,) and a valence band electron is subsequently excited ther-
mally to the empty state on the recombination level, leaving a hole behind
in the valence band (G,). The process can then be repeated over and over,
providing electrons for the conduction band and holes for the valence band.
Normally, these emission processes are exactly balanced by the correspond-
ing capture processes R, and R,. However, in the reverse-bias transition
region, generated carriers are swept out before recombination can occur,
and net generation results.
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Of course, the importance of thermal generation within W depends on
the temperature and the nature of the recombination centers. A level near
the middle of the band gap is most effective, since for such centers neither G,
nor G, requires thermal excitation of an electron over more than about half
the band gap. If no recombination level is available, this type of generation
is negligible. However, in most materials recombination centers exist near
the middle of the gap due to trace impurities or lattice defects. Generation
from centers within W is most important in materials with large band gaps,
for which band-to-band generation in the neutral regions is small. Thus for Si,
generation within W is generally more important than for a narrower band
gap material such as Ge.

The saturation current due to generation in the neutral regions was
found to be essentially independent of reverse bias. However, generation
within W naturally increases as W increases with reverse bias. As a result,
the reverse current can increase almost linearly with W, or with the square
root of reverse-bias voltage.

5.6.3 Ohmic Losses

In deriving the diode equation we assumed that the voltage applied to the
device appears entirely across the junction. Thus we neglected any voltage
drop in the neutral regions or at the external contacts. For most devices this
is a valid assumption; the doping is usually fairly high, so that the resistivity of
each neutral region is low, and the area of a typical diode is large compared
with its length. However, some devices do exhibit ohmic effects, which cause
significant deviation from the expected /-V characteristic.

We can seldom represent ohmic losses in a diode accurately by includ-
ing a simple resistance in series with the junction. The effects of voltage drops
outside the transition region are complicated by the fact that the voltage
drop depends on the current, which in turn is dictated by the voltage across
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the junction. For example, if we represent the series resistance of the p and n
regions by R, and R, respectively, we can write the junction voltage V as

V=V, = I[R,(I) + R,(I)] (5-76)

where V, is the external voltage applied to the device. As the current
increases, there is an increasing voltage drop in R, and R,,, and the junction
voltage V decreases. This reduction in V lowers the level of injection so that
the current increases more slowly with increased bias. A further complication
in calculating the ohmic loss is that the conductivity of each neutral region
increases with increasing carrier injection. Since the effects of Eq. (5-76) are
most pronounced at high injection levels, this conductivity modulation by the
injected excess carriers can reduce R, and R, significantly.

Ohmic losses are purposely avoided in properly designed devices by
appropriate choices of doping and geometry. Therefore, deviations of the
current generally appear only for very high currents, outside the normal
operating range of the device.

Figure 5-37 shows the forward and reverse current—voltage character-
istics of a p-n junction on a semilog scale, both for an ideal Shockley diode
as well as for non-ideal devices. For an ideal forward-biased diode, we get
a straight line on a semilog plot reflecting the exponential dependence of
current on voltage. On the other hand, taking into account all the second-
order effects discussed in Section 5.6, we see various regions of operation. At
low current levels, we see the enhanced generation-recombination current,
leading to a higher diode ideality factor (m = 2). For moderate currents, we
get ideal low-level injection and diffusion-limited current (mn = 1). At higher
currents, we get high-level injection and n = 2, while at even higher currents,
the ohmic drops in the space charge neutral regions become important.

Similarly, in reverse bias, in an ideal diode, we have a constant, volt-
age-independent reverse saturation current. However, in actuality, we get an
enhanced, voltage-dependent generation—recombination leakage current. At
very high reverse biases, the diode breaks down reversibly due to avalanche
or Zener effects.

5.6.4 Graded Junctions

While the abrupt junction approximation accurately describes the proper-
ties of many epitaxially grown junctions, it is often inadequate in analyzing
diffused or implanted junction devices. For shallow diffusions, in which the
diffused impurity profile is very steep (Fig. 5-38a), the abrupt approximation
is usually acceptable. If the impurity profile is spread out into the sample,
however, a graded junction can result (Fig. 5-38b). Several of the expressions
we have derived for the abrupt junction must be modified for this case (see
Section 5.5.5).

The graded junction problem can be solved analytically if, for example,
we make a linear approximation of the net impurity distribution near the
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Forward and reverse current-voltage characteristics plotted on semilog scales, with
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with respect to saturation current, l; (a) the ideal forward characteristic is an exponential with an
ideality factor n = 1 (dashed straight line on log-linear plot). The actual forward characteristics of a
typical diode (solid line) have four regimes of operation; (b) ideal reverse characteristic (dashed line)
is a voltage-independent current = —Jy. Actual leakage characteristics (solid line) are higher due to

generation in the depletion region, and also show breakdown at high voltages.

junction (Fig. 5-38c). We assume that the graded region can be described
approximately by

N, — N, = Gx (5-77)

where G is a grade constant giving the slope of the net impurity distribution.
In Poisson’s equation [Eq. (5-14)], the linear approximation becomes

dé q q
—=-(p—-n+Nj—N,) =—Gx 5-78
= P N) = (5-78)
within the transition region. In this approximation we assume complete ion-
ization of the impurities and neglect the carrier concentrations in the transi-
tion region, as before. The net space charge varies linearly over W, and the
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Figure 5-38
Approximations to
diffused junctions:

(a) shallow
diffusion (abrupt);
(b) deep drive-in
diffusion with
source removed
(graded);

(c) linear
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to the graded
junction.

Figure 5-39
Properties of
the graded
junction transition
region: (a) net
impurity profile;
(b) net charge
distribution;

(c) electric field;
(d) electrostatic
potential.
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electric field distribution is therefore parabolic. The expressions for contact
potential and junction capacitance are different from the abrupt junction
case (Fig. 5-39 and Prob. 5.42), since the electric field is no longer linear on
each side of the junction.

In a graded junction the usual depletion approximation is often inac-
curate. If the grade constant G is small, the carrier concentrations (p-n) can
be important in Eq. (5-78). Similarly, the usual assumption of negligible
space charge outside the transition region is questionable for small G. It
would be more accurate to refer to the regions just outside the transition
region as quasi-neutral rather than neutral. Thus the edges of the transition
region are not sharp as Fig. 5-39 implies but are spread out in x. These effects
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complicate calculations of junction properties, and a computer must be used
in solving the problem accurately.

Most of the conclusions we have made regarding carrier injection,
recombination and generation currents, and other properties are qualitatively
applicable to graded junctions, with some alterations in the functional form
of the resulting equations. Therefore, we can apply most of our basic concepts
of junction theory to reasonably graded junctions as long as we remember
that certain modifications should be made in accurate computations.
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Many of the useful properties of a p-n junction can be achieved by simply
forming an appropriate metal-semiconductor contact. This approach is obvi-
ously attractive because of its simplicity of fabrication; also, as we shall see
in this section, metal-semiconductor junctions are particularly useful when
high-speed rectification is required. On the other hand, we also must be able
to form nonrectifying (ohmic) contacts to semiconductors. Therefore, this
section deals with both rectifying and ohmic contacts.

5.7.1 Schottky Barriers

In Section 2.2.1 we discussed the work function ¢®,, of a metal in a vacuum.
An energy of g®,, is required to remove an electron at the Fermi level to
the vacuum outside the metal. Typical values of ®,, for very clean surfaces
are 4.3 V for Al and 4.8 V for Au. When negative charges are brought near
the metal surface, positive (image) charges are induced in the metal. When
this image force is combined with an applied electric field, the effective work
function is somewhat reduced. Such barrier lowering is called the Schottky
effect, and this terminology is carried over to the discussion of potential bar-
riers arising in metal-semiconductor contacts. Although the Schottky effect
is only a part of the explanation of metal-semiconductor contacts, rectifying
contacts are generally referred to as Schottky barrier diodes. In this section
we shall see how such barriers arise in metal-semiconductor contacts. First
we consider barriers in ideal metal-semiconductor junctions, and then in
Section 5.74 we will include effects which alter the barrier height.

When a metal with work function g®,, is brought in contact with a
semiconductor having a work function q®,, charge transfer occurs until the
Fermi levels align at equilibrium (Fig. 5-40). For example, when ®,, > &,
the semiconductor Fermi level is initially higher than that of the metal before
contact is made. To align the two Fermi levels, the electrostatic potential of
the semiconductor must be raised (i.e., the electron energies must be low-
ered) relative to that of the metal. In the n-type semiconductor of Fig. 5-40
a depletion region W is formed near the junction. The positive charge due
to uncompensated donor ions within W matches the negative charge on the
metal. The electric field and the bending of the bands within W are similar
to effects already discussed for p-n junctions. For example, the depletion
width W in the semiconductor can be calculated from Eq. (5-21) by using

5.7

METAL-
SEMICONDUCTOR
JUNCTIONS
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A Schottky barrier formed by contacting an ntype semiconductor with a metal having a larger work
function: (a) band diagrams for the metal and the semiconductor before joining; (b) equilibrium band
diagram for the junction.

the p*-n approximation (i.e., by assuming the negative charge in the dipole
as a thin sheet of charge to the left of the junction). Similarly, the junction
capacitance is Ae/W, as in the p*-n junction.'”

The equilibrium contact potential V, which prevents further net elec-
tron diffusion from the semiconductor conduction band into the metal, is the
difference in work function potentials ®,, — ®,. The potential barrier height
@y, for electron injection from the metal into the semiconductor conduction
band is ®,,— x, where gy (called the electron affinity) is measured from the
vacuum level to the semiconductor conduction band edge. The equilibrium
potential difference V), can be decreased or increased by the application of
either forward- or reverse-bias voltage, as in the p-n junction.

Figure 5-41 illustrates a Schottky barrier on a p-type semiconductor,
with ®@,, < ®,. In this case aligning the Fermi levels at equilibrium requires
a positive charge on the metal side and a negative charge on the semiconduc-
tor side of the junction. The negative charge is accommodated by a depletion
region W in which ionized acceptors (N,) are left uncompensated by holes.
The potential barrier V|, retarding hole diffusion from the semiconductor to
the metal is &, — ®,,, and as before this barrier can be raised or lowered

7While the properties of the Schottky barrier depletion region are similar to those of the p'-n region, it is
clear that the analogy does not include forward-bias hole injection, which is dominant for the p-n region,
but not for the contact of Fig. 5-40.
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by the application of voltage across the junction. In visualizing the barrier
for holes, we recall from Fig. 5-11 that the electrostatic potential barrier for
positive charge is opposite to the barrier on the electron energy diagram.

The two other cases of ideal metal-semiconductor contacts ($,, < D,
for n-type semiconductors, and ®,, > &, for p-type) result in nonrectifying
contacts. We will save treatment of these cases for Section 5.73, where ohmic
contacts are discussed.

5.7.2 Rectifying Contacts

When a forward-bias voltage V is applied to the Schottky barrier of Fig. 5—40b,
the contact potential is reduced from V|, to V,, — V (Fig. 5-42a). As a result,
electrons in the semiconductor conduction band can diffuse across the deple-
tion region to the metal. This gives rise to a forward current (metal to semi-
conductor) through the junction. Conversely, a reverse bias increases the
barrier to V,, + V,, and electron flow from semiconductor to metal becomes
negligible. In either case flow of electrons from the metal to the semiconduc-
tor is retarded by the barrier ®,, — y. The resulting diode equation is similar

in form to that of the p-n junction
I = ItV T — 1) (5-79)

as Fig. 5-42c suggests. In this case the reverse saturation current /; is not
simply derived as it was for the p-n junction. One important feature we can
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Figure 5-41

A Schottky barrier
between a ptype
semiconductor
and a metal
having a smaller
work function:

(a) band
diagrams before
joining; (b) band
diagram for

the junction at
equilibrium.
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Effects of forward and reverse bias on the junction of Fig. 5-40: (a) forward bias; (b) reverse bias;
(c) typical current-voltage characteristic.

predict intuitively, however, is that the saturation current should depend
upon the size of the barrier @y for electron injection from the metal into the
semiconductor. This barrier (which is ®,, — x for the ideal case shown in
Fig. 5-42) is unaffected by the bias voltage. We expect the probability of an
electron in the metal surmounting this barrier to be given by a Boltzmann
factor. Thus

I, = e 4®/kT (5-80)

The diode equation (5-79) applies also to the metal-p-type semicon-
ductor junction of Fig. 5-41. In this case forward voltage is defined with the
semiconductor biased positively with respect to the metal. Forward current
increases as this voltage lowers the potential barrier to V, — V and holes flow
from the semiconductor to the metal. Of course, a reverse voltage increases
the barrier for hole flow and the current becomes negligible.

In both of these cases the Schottky barrier diode is rectifying, with
easy current flow in the forward direction and little current in the reverse
direction. We also note that the forward current in each case is due to the
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injection of majority carriers from the semiconductor into the metal. The
absence of minority carrier injection and the associated storage delay time
is an important feature of Schottky barrier diodes. Although some minority
carrier injection occurs at high current levels, these are essentially major-
ity carrier devices. Their high-frequency properties and switching speed are
therefore generally better than typical p-n junctions.

In the early days of semiconductor technology, rectifying contacts were
made simply by pressing a wire against the surface of the semiconductor.
In modern devices, however, the metal-semiconductor contact is made by
depositing an appropriate metal film on a clean semiconductor surface and
defining the contact pattern photolithographically. Schottky barrier devices
are particularly well suited for use in densely packed integrated circuits,
because fewer photolithographic masking steps are required compared to
p-n junction devices.

5.7.3 Ohmic Contacts

In many cases we wish to have an ohmic metal-semiconductor contact, hav-
ing a linear /-V characteristic in both biasing directions. For example, the
surface of a typical integrated circuit is a maze of p and n regions, which must
be contacted and interconnected. It is important that such contacts be ohmic,
with minimal resistance and no tendency to rectify signals.

Ideal metal-semiconductor contacts are ohmic when the charge
induced in the semiconductor in aligning the Fermi levels is provided by
majority carriers (Fig. 5-43). For example, in the ®,, < ®, (n-type) case
of Fig. 5-43a, the Fermi levels are aligned at equilibrium by transferring
electrons from the metal to the semiconductor. This raises the semicon-
ductor electron energies (lowers the electrostatic potential) relative to the
metal at equilibrium (Fig. 5-43b). In this case the barrier to electron flow
between the metal and the semiconductor is small and easily overcome
by a small voltage. Similarly, the case ®,, > ®, (p-type) results in easy
hole flow across the junction (Fig. 5-43d). Unlike the rectifying contacts
discussed previously, no depletion region occurs in the semiconductor in
these cases since the electrostatic potential difference required to align the
Fermi levels at equilibrium calls for accumulation of majority carriers in
the semiconductor.

A practical method for forming ohmic contacts is by doping the
semiconductor heavily in the contact region. Thus if a barrier exists at the
interface, the depletion width is small enough to allow carriers to tunnel
through the barrier. For example, Au containing a small percentage of Sb
can be alloyed to n-type Si, forming an n" layer at the semiconductor sur-
face and an excellent ohmic contact. Similarly, p-type material requires a
p" surface layer in contact with the metal. In the case of Al on p-type Si,
the metal contact also provides the acceptor dopant. Thus the required p*
surface layer is formed during a brief heat treatment of the contact after
the Al is deposited.

255



256 Chapter 5

Metal Semiconductor

P, < O n-type
)
! 1 " qd, 9x
EFm
I E,
-t E,
E,
(a) (b)
Metal Semiconductor
(I)m > q)s p'type
qd)s ax
g
q®,,
e Epy
E,
EFm
() (d)
Figure 5-43

Ohmic mefal-semiconductor contacts: (a) ®,, < ®, for an ntype semiconductor, and (b) the equilibrium
band diagram for the junction; (c) ®,, > ®, for a ptype semiconductor, and (d) the junction at equilibrium.
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5.7.4 Typical Schottky Barriers

The discussion of ideal metal-semiconductor contacts does not include cer-
tain effects of the junction between the two dissimilar materials. Unlike a
p-n junction, which occurs within a single crystal, a Schottky barrier junc-
tion includes a termination of the semiconductor crystal. The semiconduc-
tor surface contains surface states due to incomplete covalent bonds and
other effects, which can lead to charges at the metal-semiconductor inter-
face. Furthermore, the contact is seldom an atomically sharp discontinuity
between the semiconductor crystal and the metal. There is typically a thin
interfacial layer, which is neither semiconductor nor metal. For example,
silicon crystals are covered by a thin (10—20 A) oxide layer even after etch-
ing or cleaving in atmospheric conditions. Therefore, deposition of a metal
on such a Si surface leaves a glassy interfacial layer at the junction. Although
electrons can tunnel through this thin layer, it does affect the barrier to cur-
rent transport through the junction.

Because of surface states, the interfacial layer, microscopic clusters
of metal-semiconductor phases, and other effects, it is difficult to fabricate
junctions with barriers near the ideal values predicted from the work func-
tions of the two isolated materials. Therefore, measured barrier heights are
used in device design. In compound semiconductors the interfacial layer
introduces states in the semiconductor band gap that pin the Fermi level
at a fixed position, regardless of the metal used (Fig. 5-44). For example,
a collection of interface states located 0.7~0.9 eV below the conduction
band pins E at the surface of n-type GaAs, and the Schottky barrier height
is determined from this pinning effect rather than by the work function of
the metal. An interesting case is n-type InAs (Fig. 5-44b), in which E at
the interface is pinned above the conduction band edge. As a result, ohmic

Er oyl = — — ———— - ¢ Ep i

states

Metal n—GaAs Metal n—InAs
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Figure 5-44
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Fermi level pinning by inferface states in compound semiconductors: (a) Ef is pinned near E, — 0.8 eV

in ntype GaAs, regardless of the choice of metal; (b) E: is pinned above E. in ntype InAs, providing

an excellent ohmic contact.
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contact to n-type InAs can be made by depositing virtually any metal on
the surface. For Si, good Schottky barriers are formed by various metals,
such as Au or Pt. In the case of Pt, heat treatment results in a platinum
silicide layer, which provides a reliable Schottky barrier with @5 = 0.85V
on n-type Si.

A full treatment of Schottky barrier diodes results in a forward current
equation of the form

I = ABT?¢ 9%/kTgaV/nkT (5-81)

where B is a constant containing parameters of the junction properties and n
is a number between 1 and 2, similar to the ideality factor in Eq. (5-74) but
arising from different reasons. The mathematics of this derivation is similar
to that of thermionic emission, and the factor B corresponds to an effective
Richardson constant in the thermionic problem.

5.8
HETERO-
JUNCTIONS

Thus far we have discussed p-n junctions formed within a single semicon-
ductor (homojunctions) and junctions between a metal and a semicon-
ductor. The third important class of junctions consist of those between
two lattice-matched semiconductors with different band gaps (hetero-
junctions). We discussed lattice-matching in Section 1.4.1. The interface
between two such semiconductors may be virtually free of defects, and
continuous crystals containing single or multiple heterojunctions can be
formed. The availability of heterojunctions and multilayer structures in
compound semic